Strohmann, Tobias und Bugelnig, Katrin und Breitbarth, Eric und Wilde, Fabian und Requena, Guillermo (2022) Fast Segmentation Of Synchrotron Tomography Data Using Convolutional Neural Networks. 9th GACM Colloquium on Computational Mechanics, 2022-09-21 - 2022-09-23, Essen.
PDF
- Nur DLR-intern zugänglich
1MB |
Kurzfassung
The continuously increasing brilliance of synchrotron sources as well as the use of fast imaging detectors gives material scientists access to a large amount of three- or four-dimensional data. Such microstructural data are important to investigate the relationships between microstructure and properties of materials. However, human-based segmentation of tomographic images can be a tedious time-consuming task and often represents a bottleneck in the research process. Deep learning algorithms and, particularly, convolutional neural networks are state-of-the-art techniques for pattern recognition in digital images, and their use in materials science is explored. However, their application needs to be adapted to the specific needs of this field. In our work, a convolutional neural network was trained to segment the microstructural components of an Al-Si cast alloy imaged using synchrotron X-ray tomography. A pixel-wise weighted error function is implemented to account for microstructural features which are difficult to identify in the topographies but play a relevant role for the correct description of the 3D architecture of the investigated alloy. The results show that the total working time for the segmentation with the trained convolutional neural network was reduced to <1% of the time needed for human-based segmentation.
elib-URL des Eintrags: | https://elib.dlr.de/189496/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Fast Segmentation Of Synchrotron Tomography Data Using Convolutional Neural Networks | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 22 September 2022 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Synchrotron Tomography, Deep Learning, Machine Learning | ||||||||||||||||||||||||
Veranstaltungstitel: | 9th GACM Colloquium on Computational Mechanics | ||||||||||||||||||||||||
Veranstaltungsort: | Essen | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 21 September 2022 | ||||||||||||||||||||||||
Veranstaltungsende: | 23 September 2022 | ||||||||||||||||||||||||
Veranstalter : | GACM | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Komponenten und Systeme | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | L CS - Komponenten und Systeme | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Strukturwerkstoffe und Bauweisen | ||||||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Werkstoff-Forschung > Metallische Strukturen und hybride Werkstoffsysteme | ||||||||||||||||||||||||
Hinterlegt von: | Strohmann, Tobias | ||||||||||||||||||||||||
Hinterlegt am: | 03 Nov 2022 08:52 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:50 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags