Sievers, Leon und Pitz, Johannes und Baeuml, Berthold (2022) Learning Purely Tactile In-Hand Manipulation with a Torque-Controlled Hand. In: 39th IEEE International Conference on Robotics and Automation, ICRA 2022. IEEE. ICRA 2022, 2022-05-23 - 2022-05-27, Philadelphia, USA. doi: 10.1109/ICRA46639.2022.9812093. ISBN 978-172819681-7. ISSN 1050-4729.
PDF
- Nur DLR-intern zugänglich
4MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9812093
Kurzfassung
We show that a purely tactile dextrous in-hand manipulation task with continuous regrasping, requiring permanent force closure, can be learned from scratch and executed robustly on a torque-controlled humanoid robotic hand. The task is rotating a cube without dropping it, but in contrast to OpenAI's seminal cube manipulation task, the palm faces downwards and no cameras but only the hand's position and torque sensing are used. Although the task seems simple, it combines for the first time all the challenges in execution as well as learning that are important for using in-hand manipulation in real-world applications. We efficiently train in a precisely modeled and identified rigid body simulation with off-policy deep reinforcement learning, significantly sped up by a domain adapted curriculum, leading to a moderate 600 CPU hours of training time. The resulting policy is robustly transferred to the real humanoid DLR Hand-II, e.g., reaching more than 46 full 2*pi rotations of the cube in a single run and allowing for disturbances like different cube sizes, hand orientation, or pulling a finger.
elib-URL des Eintrags: | https://elib.dlr.de/189343/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Zusätzliche Informationen: | Preprint: https://arxiv.org/abs/2204.03698 | ||||||||||||||||
Titel: | Learning Purely Tactile In-Hand Manipulation with a Torque-Controlled Hand | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Mai 2022 | ||||||||||||||||
Erschienen in: | 39th IEEE International Conference on Robotics and Automation, ICRA 2022 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
DOI: | 10.1109/ICRA46639.2022.9812093 | ||||||||||||||||
Verlag: | IEEE | ||||||||||||||||
ISSN: | 1050-4729 | ||||||||||||||||
ISBN: | 978-172819681-7 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Reinforcement learning, In-hand manipulation | ||||||||||||||||
Veranstaltungstitel: | ICRA 2022 | ||||||||||||||||
Veranstaltungsort: | Philadelphia, USA | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 23 Mai 2022 | ||||||||||||||||
Veranstaltungsende: | 27 Mai 2022 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Autonome, lernende Roboter [RO] | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Autonomie und Fernprogrammierung | ||||||||||||||||
Hinterlegt von: | Pitz, Johannes | ||||||||||||||||
Hinterlegt am: | 26 Okt 2022 17:23 | ||||||||||||||||
Letzte Änderung: | 28 Mai 2024 10:31 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags