elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Data-driven reduced order modeling for aerodynamic flow predictions

Hines Chaves, Derrick Armando und Bekemeyer, Philipp (2022) Data-driven reduced order modeling for aerodynamic flow predictions. Eccomas Congress 2022, 2022-06-05 - 2022-06-09, Oslo, Norwegen. doi: 10.23967/eccomas.2022.077.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

During each aircraft program a vast amount of aerodynamics data has to be generated to judge performance, structural loads as well as handling qualities. Within the past years the usage of computational fluid dynamics has significantly increased providing accurate insights into aircraft behaviour at early design stages and therefore at least partially enabled the mitigation of costly design changes. However, fully relying on high fidelity aerodynamic data is still computational prohibitive. Hence, data-driven models have gained an increasing attention in recent years. These methods not only provide continuous models but also enable the inclusion of highly accurate aerodynamic results in time-critical environments. This paper aims at applying deep learning techniques to derive such models and compare them to state of the art reduced order modeling techniques. In particular, three deep learning methods, a Multi-layer perceptron for distribution predictions, a Multi-layer perceptron for pointwise predictions and an Autoencoder coupled with an interpolation technique are compared to Proper Orthogonal Decomposition and Isomap with latent space interpolation. For all methods an efficient methodology to determine hyperparameters is outlined and applied. Results are presented for an Airbus provided XRF1 dataset which includes surface pressure distributions at various Mach numbers and angles of attack.

elib-URL des Eintrags:https://elib.dlr.de/189313/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Data-driven reduced order modeling for aerodynamic flow predictions
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hines Chaves, Derrick ArmandoDerrick.HinesChaves (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Bekemeyer, PhilippPhilipp.Bekemeyer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Juni 2022
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.23967/eccomas.2022.077
Status:veröffentlicht
Stichwörter:Reduced-order model, Deep Learning, Proper Orthogonal Decomposition, Multi-layer Perceptron, Autoencoder, Aerodynamics
Veranstaltungstitel:Eccomas Congress 2022
Veranstaltungsort:Oslo, Norwegen
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:5 Juni 2022
Veranstaltungsende:9 Juni 2022
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Effizientes Luftfahrzeug
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L EV - Effizientes Luftfahrzeug
DLR - Teilgebiet (Projekt, Vorhaben):L - Digitale Technologien
Standort: Braunschweig
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > CASE, BS
Hinterlegt von: Hines Chaves, Derrick Armando
Hinterlegt am:01 Nov 2022 11:07
Letzte Änderung:24 Apr 2024 20:50

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.