Niroumand-Jadidi, Milad and Bovolo, Francesca and Bresciani, Mariano and Gege, Peter and Giardino, Claudia (2022) Water Quality Retrieval from Landsat-9 (OLI-2) Imagery and Comparison to Sentinel-2. Remote Sensing, 14, pp. 4596-4614. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs14184596. ISSN 2072-4292.
PDF
- Published version
6MB |
Abstract
The Landsat series has marked the history of Earth observation by performing the longest continuous imaging program from space. The recent Landsat-9 carrying Operational Land Imager 2 (OLI-2) captures a higher dynamic range than sensors aboard Landsat-8 or Sentinel-2 (14-bit vs. 12-bit) that can potentially push forward the frontiers of aquatic remote sensing. This potential stems from the enhanced radiometric resolution of OLI-2, providing higher sensitivity over water bodies that are usually low-reflective. This study performs an initial assessment on retrieving water qual-ity parameters from Landsat-9 imagery based on both physics-based and machine learning mod-eling. The concentration of chlorophyll-a (Chl-a) and total suspended matter (TSM) are retrieved based on physics-based inversion in four Italian lakes encompassing oligo to eutrophic conditions. A neural network-based regression model is also employed to derive Chl-a concentration in San Francisco Bay. We perform a consistency analysis between the constituents derived from Land-sat-9 and near-simultaneous Sentinel-2 imagery. The Chl-a and TSM retrievals are validated using in situ matchups. The results indicate relatively high consistency among the water quality prod-ucts derived from Landsat-9 and Sentinel-2. However, the Landsat-9 constituent maps show less grainy noise, and the matchup validation indicates relatively higher accuracies obtained from Landsat-9 (e.g., TSM R2 of 0.89) compared to Sentinel-2 (R2= 0.71). The improved constituent re-trieval from Landsat-9 can be attributed to the higher signal-to-noise (SNR) enabled by the wider dynamic range of OLI-2. We performed an image-based SNR estimation that confirms this as-sumption.
Item URL in elib: | https://elib.dlr.de/189293/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Water Quality Retrieval from Landsat-9 (OLI-2) Imagery and Comparison to Sentinel-2 | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 14 September 2022 | ||||||||||||||||||||||||
Journal or Publication Title: | Remote Sensing | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 14 | ||||||||||||||||||||||||
DOI: | 10.3390/rs14184596 | ||||||||||||||||||||||||
Page Range: | pp. 4596-4614 | ||||||||||||||||||||||||
Publisher: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||||||
ISSN: | 2072-4292 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Landsat-9; OLI-2; water quality; lakes; chlorophyll-a; total suspended matter; physics-based modeling; machine learning; Sentinel-2; San Francisco Bay | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Optical remote sensing | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > Experimental Methods | ||||||||||||||||||||||||
Deposited By: | Gege, Dr.rer.nat. Peter | ||||||||||||||||||||||||
Deposited On: | 26 Oct 2022 13:54 | ||||||||||||||||||||||||
Last Modified: | 26 Oct 2022 13:54 |
Repository Staff Only: item control page