Oberkirsch, Laurin und Maldonado Quinto, Daniel und Schwarzbözl, Peter und Hoffschmidt, Bernhard (2021) GPU-based Aim Point Optimization for Solar Tower Power Plants. Solar Energy. Elsevier. doi: 10.1016/j.solener.2020.11.053. ISSN 0038-092X.
PDF
- Preprintversion (eingereichte Entwurfsversion)
2MB |
Kurzfassung
In solar tower power plants, aim point optimization is suitable to find aim point distributions resulting in intercept powers close to the theoretical maximum. However, the application in real time operation often faces the problem of long optimization duration. To counteract this issue, the convergence of an existing strategy, the ant colony optimization meta-heuristic, is enhanced. The raytracing is already replaced by pre-calculated flux maps of the individual heliostats in previous works to increase the optimization speed. In this work, the optimization is merged with a grouping strategy and implemented on a GPU to achieve further time reductions. Here, a k-means clustering algorithm performs the heliostats grouping. The use of groups reduces the solution space for the optimizer and additionally the amount of pre-calculated flux maps, so that the data fits in the global memory of the GPU. Over 100 billion flux values can be evaluated per second using this adapted approach. In this way, the algorithm finds suitable aim point distributions within a few seconds up to a minute. The achieved intercepts are 1 % to 4 % higher then those found by a single factor aiming strategy for the evaluated central receiver reference power plant. Moreover, the approach has proved its applicability in clouded environments that lead to spatially fluctuating solar radiation. There, a spillage reduction compared to the single factor aiming of 35 % is reached.
elib-URL des Eintrags: | https://elib.dlr.de/189242/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Zusätzliche Informationen: | Dieses Paper ist im Rahmen des Projekts HeliBo entstanden und wurde beim Journal für Solar Energy im Mai 2020 eingereicht und im November 2020 akzeptiert. Es ist nicht Open-Source. | ||||||||||||||||||||
Titel: | GPU-based Aim Point Optimization for Solar Tower Power Plants | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 27 Januar 2021 | ||||||||||||||||||||
Erschienen in: | Solar Energy | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1016/j.solener.2020.11.053 | ||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||
ISSN: | 0038-092X | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Concentrating solar power, Solar tower power plant, Heliostat aiming, Aim point optimization, Cloud disturbance | ||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||
HGF - Programm: | Materialien und Technologien für die Energiewende | ||||||||||||||||||||
HGF - Programmthema: | Thermische Hochtemperaturtechnologien | ||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||
DLR - Forschungsgebiet: | E SW - Solar- und Windenergie | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Intelligenter Betrieb | ||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Solarforschung > Solare Kraftwerktechnik | ||||||||||||||||||||
Hinterlegt von: | Oberkirsch, Laurin | ||||||||||||||||||||
Hinterlegt am: | 28 Okt 2022 10:39 | ||||||||||||||||||||
Letzte Änderung: | 04 Dez 2023 12:44 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags