
PREPRINT - GPU-based Aim Point Optimization for Solar Tower Power Plants

Laurin Oberkirscha,∗, Daniel Maldonado Quintoa, Peter Schwarzbözla, Bernhard Hoffschmidta
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Abstract

In solar tower power plants, aim point optimization is suitable to find aim point distributions resulting in intercept
powers close to the theoretical maximum. However, the application in real time operation often faces the problem of
long optimization duration. To counteract this issue, the convergence of an existing strategy, the ant colony optimization
meta-heuristic, is enhanced. The raytracing is already replaced by pre-calculated flux maps of the individual heliostats in
previous works to increase the optimization speed. In this work, the optimization is merged with a grouping strategy and
implemented on a GPU to achieve further time reductions. Here, a k-means clustering algorithm performs the heliostats
grouping. The use of groups reduces the solution space for the optimizer and additionally the amount of pre-calculated
flux maps, so that the data fits in the global memory of the GPU. Over 100 billion flux values can be evaluated per second
using this adapted approach. In this way, the algorithm finds suitable aim point distributions within a few seconds up to
a minute. The achieved intercepts are 1% to 4% higher then those found by Vant-Hull aiming for the evaluated central
receiver reference power plant. Moreover, the approach has proved its applicability in clouded environments that lead
to spatially fluctuating solar radiation. There, a spillage reduction compared to Vant-Hull aiming of 35% is reached.

Keywords: Concentrating solar power, Solar tower power plant, Heliostat aiming, Aim point optimization, Cloud
disturbance

1. Introduction1

Solar tower power systems have to reach higher efficien-2

cies and need to overcome durability issues to be competi-3

tive for energy generation. The highest efficiency is usually4

reached, when all heliostats of a solar tower power plant5

aim at the receiver’s center. However, the receiver as one6

of the critical components of the system is then exposed7

to high peak fluxes leading to material corrosion and ther-8

mal stresses (Sánchez-González et al., 2020). Hence, well9

suited aiming strategies are necessary to observe temper-10

ature and stress limits and to operate at high efficiencies11

simultaneously (Maldonado et al., 2018). These strategies12

are especially challenged by high variability in the solar ra-13

diation. In particular, cloud passages complicate the safe14

operation, as transient incident flux distributions on the15

receiver increase the thermal stresses (Chu and Coimbra,16

2017; Garćıa et al., 2018).17

Early approaches like Vant-Hull aiming (Vant-Hull, 2002)18

coupled with a dynamic aim point processing system ap-19

plied at the Solar Two plant (Lipps and Vant-Hull, 1978)20

observe flux constraints during operation at varying en-21

vironmental conditions. According to Vant-Hull (2002),22

the aim points are spread vertically from the edges of23

a cylindrical receiver dependent on the heliostats’ beam24
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radii multiplied by a factor k. Moreover, the dynamic aim25

point processing system of Solar Two identifies flux den-26

sities exceeding the allowable flux density. It determines27

the heliostats causing the highest flux at this location and28

removes them from tracking. Finally, their fluxes are sub-29

tracted from the measured flux until it complies with the30

constraints to protect the receiver (Lipps and Vant-Hull,31

1978). This approach is suited for the control of solar32

tower power plants as it is safe, but it does not optimize33

the intercept or receiver power.34

On the one hand, Collado and Guallar (2019) extended35

the Vant-Hull (2002) strategy by introducing an additional36

factor k3 for the heliostats located further away from the37

tower. Selecting k3 ≥ k smooths the flux profile, which38

usually exhibits two peaks. Thus, the maximal flux den-39

sity is reduced and simultaneously the efficiency increases40

slightly. On the other hand, Astolfi et al. (2017) as well41

as Sánchez-González et al. (2018) also expanded the Vant-42

Hull (2002) strategy by segmenting the field in azimuthal43

sectors. For each sector, an individual factor k is de-44

termined leading to lower spillage. Moreover, Sánchez-45

González et al. (2017) added an receiver model that calcu-46

lates the Allowable Flux Density (AFD) based on thermal47

stresses and corrosion limits. This strategy finds solutions48

that observe the AFD within 2min for a Gemasolar like49

plant.50

For the same plant model, Garćıa et al. (2017) merged both51

extensions of the Vant-Hull (2002) strategy as they divided52

the field in 18 azimuthal sections, each with three groups.53

Preprint submitted to Elsevier June 8, 2022



Further, they applied a multi-input multi-output (MIMO)54

closed control loop based on Proportional Integral Deriva-55

tive (PID) controllers. Subsequently, Garćıa et al. (2018)56

analyzes the dynamic performance of the method under57

transient conditions caused by clouds. In this case, the58

control of the MIMO system is supported by a Model Pre-59

dictive Control (MPC) technique, called Dynamic Matrix60

Control (DMC). For this method, Soo Too et al. (2019) es-61

pecially concerns the arising material corrosion and ther-62

mal stresses.63

Transient conditions were also studied by Ashley et al.64

(2017) as they solved the knapsack problem of assigning65

heliostats to aim points by Binary Integer Linear Program-66

ming (BILP) in a time of 30 s using the PS10 as reference67

power plant. On this basis, Richter et al. (2019) devel-68

oped a robust Mixed Integer Linear Programming (MILP)69

aiming strategy considering tracking errors as uncertain-70

ties by a Gamma robustness approach. Further studies to71

this approach are published in Kuhnke et al. (2020). Due72

to the increased complexity in consequence of the Gamma73

robustness the running time rises to 60 s.74

In the recent years, several aiming strategies based on75

meta-heuristics are developed. Based on the HFLCAL76

convolution method, Salomé et al. (2013) applied a TABU77

algorithm that flattens the flux distribution for the THEMIS78

flat plate receiver, while minimizing spillage. Besarati79

et al. (2014) solves the same problem by replacing the80

TABU algorithm by a genetic one. Likewise, Yu et al.81

(2014) implements a TABU algorithm and Wang et al.82

(2017) a genetic algorithm for a cavity receiver.83

Furthermore, Belhomme et al. (2013) found with the ant-84

colony optimization meta-heuristic (ACO) a method to85

maximize the intercept and comply with the limits inde-86

pendent of the receiver’s shape. This method outperforms87

the Vant-Hull strategy for cylindrical receivers by 2% ac-88

cording to Flesch et al. (2017). Moreover, the approach is89

coupled with a local search algorithm by Maldonado et al.90

(2018) to improve the convergence towards the global opti-91

mum. However, the ACO cannot substitute control strate-92

gies as it delivers the suited aim point distribution in pe-93

riodic intervals e.g. one hour. During these intervals, the94

aim point distribution has to be adapted by other control95

techniques to react on changes in the sun position as well96

as on cloud passages.97

In this literature review, two main drawbacks are notice-98

able:99

� Solutions based on meta-heuristics or MILP are com-100

putationally expensive. Hence, the computational101

time is often too long for the application in dynamic102

environments with highly fluctuating solar radiation.103

Especially, if the plant size increases further e.g. more104

heliostats and more aim points, most of the algo-105

rithms reach their limits.106

� Solutions based on parameter-based aiming show sig-107

nificantly higher spillage. Even though, the losses are108

reduced by multi-parameter strategies, most of the109

strategies are prone to cloud passages in particular.110

The downside of ACO (Belhomme et al., 2013) is clearly111

the first point e.g. the long optimization time. How-112

ever, high intercepts are achieved according to Flesch et al.113

(2017). Hence, this work focuses on reducing considerably114

the running time of the ACO, while preserving the advan-115

tage of high intercepts.116

The ACO is already based on pre-calculated flux maps as117

it clearly reduces the optimization time compared to ray-118

tracing. In this paper, the ACO is coupled with a grouping119

strategy to reduce the solution space and increase in con-120

sequence the convergence rate further. Moreover, it down-121

sizes the amount of data, which in turn allows to shift122

the data into the device memory of a Graphics Processing123

Unit (GPU). As Izygon et al. (2011) demonstrated by im-124

plementing a raytracer on a GPU first, significant speed125

ups are achieved. Thus, GPU based raytracing was espe-126

cially used for heliostat field layout design (Zhou and Zhao,127

2014; Gebreiter et al., 2019). Moreover, analytical models128

based on elliptical Gaussian distributions became GPU-129

based (He et al., 2017, 2019). Due to the promised speed130

up, this work focuses on implementing an optimizer for131

heliostat-aim-point-assignment in solar tower power plants132

on a GPU. The ACO is especially suited as it offers a133

great parallelization potential. Besides, an adaption of134

the Vant-Hull (2002) strategy is applied as initial solution135

to increase robustness and reproducibility of the ACO. Fi-136

nally, some test under realistic cloud conditions show the137

applicability of the method in reality.138

2. Methods139

This section introduces the ACO first. Afterwards, the140

pre-calculated flux maps are described before the grouping141

is explained in detail. Some information regarding GPUs142

follow and the major points of the GPU implementation143

are highlighted. Finally, some adaptions to the initial ACO144

are discussed.145

2.1. Ant-colony optimization meta-heuristic146

The ACO is a multi-agent method inspired by the pheromone-
based communication of ants during foraging. In nature,
ants randomly walk around until they find food. On the
way back to their colony, they emit pheromones. If other
ants discover this pheromone path, they are more likely to
stay on this path and they will enhance the pheromone
concentration, if they find food once again. Moreover,
the pheromones evaporate with time. Hence, the con-
centration rises on highly frequented paths, but also on
shorter paths as less ants are necessary to create the same
pheromone concentration since they walk denser. In the
analogy, the evaporation prevents the algorithm to con-
verge in local optima.
According to Belhomme et al. (2013), the probability pij
of an ant following path i to j is calculated as defined in
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equation 1:

pij =
τij · ηβij∑

k∈N ·τij · ηβij
. (1)

It is based on the local pheromone concentration τij , the147

attractiveness ηij and the parameter β. Here, β states148

the relevance of attractiveness to pheromone concentra-149

tion and N the number of reachable destinations from i.150

When transferring the ant foraging to the optimization151

problem of assigning heliostats i to specific aim points j,152

each ant evaluates a combination of heliostat-aim-point-153

combinations. A combination of heliostat-aim-point-154

combinations represents one constellation, where each he-155

liostat points to a certain aim point. The pheromone con-156

centrations are stored in a pheromone matrix, which op-157

erates as a collective memory that is regularly updated158

during optimization. Similarly, the attractiveness e.g. the159

intercept factor of a heliostat assigned to an aim point is160

stored in an attractiveness matrix.161

During optimization several ants are used in parallel to162

form an ant generation. The paths ij of each ant or rather163

the combination of heliostat-aim-point-combinations is de-164

termined based on the probability and a random fac-165

tor, set by a Monte-Carlo-Method, that differs for each166

ant. Finally, each combination of heliostat-aim-point-167

combinations is evaluated and the best one is selected to168

form the subsequent ant generation.169

2.2. Pre-calculated flux maps170

An advantage of the ACO is that the number of he-171

liostats and aim points, which are usually defined on the172

receiver’s surface in advance, is finite. Thus, the raytrac-173

ing can be performed prior to the optimization for each174

heliostat-aim-point-combination. The emerging flux on175

the receiver’s surface when assigning a single heliostat to176

a single aim point is in the following referred to as flux177

map. The flux distribution is different for each sun angle,178

heliostat and aim point. Additionally, the flux differs ac-179

cording to the Direct Normal Irradiance (DNI) onto the180

heliostat. However, the flux distribution remains constant181

and is just scaled by the DNI as a factor.182

The raytracer STRAL can calculate 10 million rays per183

CPU core per second. Assuming a large plant with 1 mil-184

lion square meter heliostat surface, an accuracy of 600 rays185

per square meter and 400 aim points, the pre-calculation186

of one sun angle would require 40 min on 10 cores.187

Even though the number of possible sun angles is infinite,188

the sun angle chart 1 shows that only sun angles between189

winter and summer solstice are relevant. With a grid of 2◦190

lattice spacing in azimuth and elevation direction roughly191

1830 sun angles are necessary for southern Spain requir-192

ing 50 days of computational time. This grid size leads to193

errors below 1%. However, interpolation gives sufficiently194

accurate results even with a sparser grid.195

The algorithm can use these pre-calculated flux maps196

and only has to superpose them during optimization.197
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Figure 1: Only sun angles between winter and summer solstice are
relevant for the operation of a solar tower power plant. The courses
are presented exemplary for southern Spain and computed by the
model of Grena (2008). The graph is superimposed by a sketch of
an exemplary grid with 2◦ grid spacing.

This significantly reduces the computation time. The at-198

tractiveness e.g. the intercept of a heliostat-aim-point-199

combination is constant for one sun angle. Hence, it is200

also part of the pre-calculation. Belhomme et al. (2013)201

states that compared to raytracing the computational time202

is reduced by a factor of 102 − 104 depending on the com-203

plexity of the receiver model as well as the resolution of204

the flux on the receiver surface. At the same time, a slight205

accuracy loss emerges due to errors in shading and block-206

ing calculation as the neighboring heliostats are assigned207

to a central aim point during pre-calculation instead of the208

actual one. However, if the field becomes larger, this error209

is negligible.210

The main drawback of the ACO of Belhomme et al. (2013)211

was the long optimization duration leading to good opti-212

mization results only in periodic intervals of roughly one213

hour. This impedes the application in real plants under214

highly fluctuating conditions of reality like cloud shading.215

Thus, the interval for optimization results has to be con-216

siderably reduced. The use of pre-calculated flux maps for217

the optimization is already a good approach as it reduced218

significantly the optimization duration. Hence, they are219

also used in this work and generated by means of the ray-220

tracing software STRAL1 for various sun angles to cover221

the application at different times of the day.222

2.3. Grouping223

For the optimization in the GPU, all pre-calculated flux
maps of one sun angle have to fit in the global memory of
the GPU. However, 40 GB would be required to store the
pre-calculated flux maps as 4-byte float values assuming a
large field with 10.000 heliostats and 400 aim points and
50x50 receiver bins. Hence, the amount of data needs to be
reduced, which can be achieved by grouping. For example,
grouping the heliostats in 500 representative groups would
already result in only 2 GB that have to fit in the GPU
memory.
In this work, the grouping is performed by means of the

1STRAL is a raytracing software tool developed at the German
Aerospace Center (Belhomme et al., 2009).
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Figure 2: 6482 heliostats of a reference power plant are clustered
exemplary in 50 groups by the k-means clustering algorithm. Each
group is highlighted by a different color.

k-means clustering algorithm (Lloyd, 1982). In figure 2,
the 6482 heliostats of the later introduced reference power
plant are exemplary clustered in 50 groups. The clustering
is performed by the parameters radius and the 2-argument
arctangent arctan2 of the circumferential angle. Alterna-
tively, manual clustering as well as other algorithms are
also feasible. However, this is a fast and automatic way
to cluster fields with various shapes and sizes. If a group
constellation is determined, the pre-calculated flux maps
are superposed and stored in an overall flux map for each
group.
Another advantage of the clustering is that the pos-
sible number of combinations of heliostat-aim-point-
combinations, also referred to as solution space S, is re-
duced. Initially, the solution space for the optimizer is the
number of aim points nA to the power of the number of
heliostats nH :

|S| = nnH

A . (2)

After the clustering, it decreases to the number of aim
points to the power of the number of groups nG:

|S| = nnG

A . (3)

In this way, the optimizer finds better solutions in less224

optimization steps. Indeed, the theoretical maximum is225

also reduced due to the restricted solution space. Though,226

this drawback is acceptable for an adequate number of227

groups.228

2.4. GPU implementation229

Initally, the purpose of Graphics Processing Units230

(GPUs) was the acceleration of computer graphics and vi-231

sion related tasks. By now, great computing performance232

has been identified in other fields and with CUDA from233

NVIDIA (NVIDIA Corporation, 2019) and OpenCL, the234

GPU programmability has been significantly improved.235

In this way, the domain General-Purpose computation on236

GPU (GPGPU) emerged (Liu, 2018).237

A typical CUDA program comprises kernel code, executed238

by the GPU device, and host code, executed by the CPU.239

A kernel consists of thousands of threads, which are or-240

ganized in thread blocks. The kernel in turn is a grid of241

thread blocks. On NVIDIA hardware, groups of 32 threads242

within a thread block are scheduled as a unit and called243

warps (NVIDIA Corporation, 2019). When a kernel is244

called, the thread blocks are arranged to Streaming Multi-245

processors (SM). Each SM has its own shared memory and246

L1 data cache. In parallel algorithms, the threads often247

need to share data. Therefore, the syncthreads-function248

allows to synchronize all threads of a thread block. The249

synchronization between threads of different thread blocks250

is not possible within the kernel. Thus, the different thread251

blocks can run parallel without waiting for the others to252

finish (Liu, 2018).253

The ACO has to achieve good convergence in short op-254

timization time to be applicable in reality. Hence, the255

ACO is implemented on the GPU as significantly higher256

throughput than on the CPU is promised. Due to the high257

degree of parallelization, the ACO is well suited. The flow258

chart, figure 3, sketches the workflow of the GPU imple-259

mentation.260

Initially, the pre-calculation maps for the current sun an-

Start Optimization

Load or create

pre-calculation data

Allocate device

memory and transfer

data

Call ant path

generation kernel

Call superposition

kernel

Call find best ant

kernel

Loop ACO runs

End

run++

Figure 3: Flow chart illustrating the optimization workflow imple-
mented on the GPU.

261

gle are only loaded to the CPU memory. At start of the262

optimization, the device memory is allocated and the data263

is shifted to the global memory of the GPU. This step has264

to be performed only once per sun angle.265
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Subsequently, the ant colony optimization can start. The266

combination of group-aim-point-combinations for each ant267

is computed similarly to the model of Belhomme et al.268

(2013). The pseudorandom number generator for cuda269

applications Curand replaces the Monte-Carlo-Method to270

create slightly different combinations of group-aim-point-271

combinations for each ant of one generation.272

The superposition of the pre-calculated flux maps is the273

time-sensitive step. Per computed combination of group-274

aim-point-combinations, the flux maps of all groups are275

added to the final flux map. This means one addition per276

group, per ant and per receiver bin. Especially, the au-277

tonomous ants of each generation and the individual bins278

can be computed simultaneously and thus, provide a great279

potential for the parallelization in a GPU.280

A memory instruction for global GPU memory requires281

400-600 clock cycles. Consequently, the bottleneck of the282

GPU implementation of the ACO is the access of global283

memory and not the number of Floating Point Operations284

Per Second (FLOPS). Thus, the usage of shared mem-285

ory, which requires only 2 clock cycles, is indispensable286

(Prisacariu et al., 2009). However, shared memory has not287

the size to store all pre-calculation maps. Hence, it is used288

to store the total flux map, on which each individual flux289

maps is added as well as a quality value for each thread.290

Hence, only the pre-calculation data is in global memory,291

but the receiver model is in shared memory. This allows292

the receiver model to be more complex without increasing293

the computational time.294

Moreover, the speed of global memory access can be maxi-295

mized by accessing it coalesced. Coalesced means that the296

32 threads in a warp access consecutive 4-byte memory297

locations. This is the most efficient case as L1 cache al-298

ways fetches 128-byte cache line even when only one 4-byte299

value is required. Thus, per memory instruction, which300

costs 400-600 clock cycles, 32 4-byte values can be maxi-301

mally loaded (Liu, 2018).302

In the superposition kernel, an individual thread is cre-303

ated for each bin of the receiver surface. The thread304

sums up the fluxes of all groups in this bin. The fluxes305

of one flux map are stored in consecutive memory. More-306

over, the threads of one thread block deal with neighbored307

bins. Thus, the 128-byte sequence and full coalescence is308

achieved, which maximizes the speed of the memory ac-309

cess. As the memory access is the bottleneck of the kernel,310

it also maximizes the speed of the kernel itself.311

Finally, the find best ant kernel is called that evaluates312

the quality values determined by each parallelized ant and313

returns the best one. If the best ant is better than the cur-314

rent solution, it is applied as initial solution for the next315

loop e.g. the next ant generation is generated based on316

this ant.317

2.5. Adaptions of the ACO318

Further, the ACO has the drawback that it sometimes
diverges, if the constraints become stricter. This can be
counteracted by starting from a valid good initial guess.

In this work, a good initial solution is found by the Vant-
Hull (2002) strategy combined with an Flesch et al. (2017)
adaption. Vant-Hull (2002) multiplies the heliostats‘ beam
radii with a factor. The heliostat‘s aim point is shifted
from the edge of a cylindrical receiver towards the equator
by this scaled beam radius. However, this often results in
two hot spots; one on each side of the receiver‘s equator.
Thus, Flesch et al. (2017) additionally includes the slant
range of heliostat and center of the receiver r as an ex-
tension to the factor k of Vant-Hull according to equation
4:

kσ = k + ϵ · r. (4)

This adaption results in two determinable factors k and ϵ319

for a good initial guess. The additional factor supports the320

Vant-Hull strategy by providing further flexibility. In the321

following, this strategy is referred to as Flesch-Vant-Hull322

strategy.323

To apply the Flesch-Vant-Hull strategy as initial guess for324

the ACO two adaptions are required. First, the ACO al-325

lows only specific aim points and has the condition that all326

heliostats of one group have to aim towards the same aim327

point. Hence, the mean aim point for all heliostats in a328

group is computed. Second, determining the flux distribu-329

tion by raytracing always requires some seconds. Hence,330

the computational time is reduced by using the already331

pre-calculated flux maps. Therefore, the previously de-332

fined aim point grid is used and for each group, the closest333

existing aim point is selected. When referring to these334

strategies in this work, the word grouped is added. This335

results in the respective names grouped Vant-Hull strategy336

and grouped Flesch-Vant-Hull strategy.337

Finally, the ACO is applied in dynamic environments,338

which are exposed to cloud passages. All Sky Imager339

(ASI) based nowcasting systems can determine and predict340

the local DNI (Nouri et al., 2018, 2019, 2020; Schroedter-341

Homscheidt et al., 2018). This DNI information can342

be mapped onto the individual heliostats or groups of343

heliostats. Prior to each optimization call, the pre-344

calculation results can be scaled by this DNI information345

before they are loaded into the GPU memory.346

3. Results347

In this section, the reference power plant used for the348

evaluation is introduced first. Subsequently, the speed of349

the GPU implementation is evaluated before a group study350

is performed. Then, the grouped Flesch-Vant-Hull algo-351

rithm is tested before it is used in the ACO. Finally, the352

ACO is compared to the Vant-Hull algorithm both for an353

even DNI situation as well as for a clouded case.354

3.1. Reference power plant355

The methods that improve the convergence rate of the356

ACO are tested at a reference power plant with a designed357

thermal power of 450MW that is also used by Flesch et al.358
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(2017) and Maldonado et al. (2018). The plant has a cylin-359

drical receiver and 6482 heliostats, each with a mirror sur-360

face of 121m2. More detailed information about the vir-361

tual plant can be found in Flesch et al. (2017). In this362

work, the thermal model is not included to focus on the363

optical side of the plant. As an alternative, the Allowable364

Flux Density (AFD) is applied to limit the maximal flux365

density radiating onto the receiver’s surface. For optimiza-366

tion purposes a fixed aim point grid with 470 aim points,367

36 in circumferential direction times 13 in vertical direc-368

tion plus 2 off receiver aim points, is employed. The 21th369

of March at noon is chosen as evaluation time. Initially,370

the DNI is 1000Wm−2 across the entire field.371

3.2. GPU speed evaluation372

The optimization on a NVIDIA Quadro P5000 per-373

forms in 98 s 1000 ant generations runs, each with 16384374

ants, for the reference power plant. Here, 200 groups are375

used and the receiver has 1500 bins, 60 in circumferential376

and 25 in vertical direction. The total time splits into the377

kernel times per run as presented in figure 4.378

The time required by the superposition kernel is the

ant path
generation

superposition
find
best
ant

other
operations

23 44 3 28

Figure 4: Kernel times in milliseconds for one run comprising 16384
ants, 200 groups and 1500 receiver bins.

379

longest. Here, a memory instruction and an addition oper-380

ation is performed for each bin, for each group and for each381

ant. This results in 1500·200·16384
0.044 = 112 · 109 flux values382

that are loaded and evaluated per second. The number of383

evaluated flux values reduces to 50 · 109, if the additional384

times for ant path generation kernel, find best ant kernel385

and some further CPU computations are included. How-386

ever, these times scale far less than linear with the number387

of evaluated flux values. Thus, increasing the ants, groups388

or bins always results in a higher share of the superpo-389

sition kernel time compared to the total time. Moreover,390

using a more complex receiver model only leads to a longer391

computational time in the superposition kernel, which is392

perfectly parallelized on the GPU, so that occupancies of393

99% to 100% are achieved.394

Tests with the GeForce RTX 2080 are roughly twice as395

fast as the Quadro P5000; tests with a low-priced GPU,396

the GeForce GTX 650 Ti, are roughly 0.3 times as fast.397

However, the issue becomes for this GPU the limited GPU398

memory size of only 1 GB.399

3.3. Group study400

The optimal group size for the ACO is determined by401

analyzing the convergence for different numbers of groups.402

This is accomplished by figure 5 as it shows the inter-403

cept over optimization duration for various group num-404

bers. Here, 800 kWm−2 is used as AFD as the results dif-405

fer stronger for lower AFDs and valid solutions are harder406

to find.407

On the one hand, low group numbers lead to strong
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Figure 5: The convergence of the ACO e.g the intercept with respect
to optimization time is shown for various number of groups into
which the heliostats of the reference power plant are clustered.

408

convergence in the first seconds. Thus, the results are ini-409

tially ordered contrary to the group size. On the other410

hand, higher group numbers result in greater intercepts411

if optimizing longer. 350 groups even reach an intercept412

beyond 0.948 in less than two minutes. The figure also ex-413

hibits that a group number of 450 is too large as the curve414

converges significantly slower, so that no better solution is415

found in an acceptable time frame.416

Moreover, lower group numbers lead to better results, if417

the AFD restrictions are less challenging, whereas higher418

group numbers find better results for stronger restrictions.419

3.4. Vant-Hull results420

Before evaluating the ACO algorithm, the results of421

the Vant-Hull strategy are presented as it will be used as422

reference for the ACO in the following. Figure 6 shows423

the maximal flux density of the Flesch-Vant-Hull strategy424

with respect to the applied factors k and ϵ. According425

to equation 4, the curve for ϵ = 0 represents the original426

Vant-Hull strategy. Furthermore, the color gradient illus-427

trates the intercept. The figure demonstrates that raising428

k and ϵ results in enhanced intercepts, but also in higher429

maximal flux densities.430

Moreover, a valley is formed in the curve of the maxi-431

mal flux density. The bottom of the valley is highlighted432

by the black dashed line. It starts at k = 2.6 for the433

original Vant-Hull strategy with a maximal flux density of434

771 kWm−2 and decreases further to k = 0 and ϵ = 4 with435

659 kWm−2. Simultaneously, the intercept decreases from436

0.91 to 0.85.437

Additionally, the black dotted line describes a curve with438

constant maximal flux density of 771 kWm−2. Initially,439

the intercept remains also constant, but for ϵ ≥ 3 a slight440
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Figure 6: The maximal flux density of the Flesch-Vant-Hull strategy
for various factors k and ϵ is presented. The curve with ϵ = 0 outlines
the results of the original Vant-Hull strategy. The color gradient
visualizes the intercept.
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Figure 7: The maximal flux density and the intercept of the grouped
Flesch-Vant-Hull strategy are shown for two different group numbers.

drop is identified.441

As soon as, the grouped Flesch-Vant-Hull strategy is ap-442

plied as initial solution for the ACO, the groups and the443

fixed grid of aim points are used. Thus, the pre-calculated444

flux maps can be applied and many k − ϵ− combinations445

can be tested in less than a second. As a result of the446

limited flexibility, the curves obtain a more riffled shape447

as pictured in 7. However, the general shape remains448

unchanged, but is shifted towards higher maximal flux449

densities, when lowering the number of groups. Like-450

wise, the minima increase significantly to 794 kWm−2 and451

880 kWm−2 for 500 and 200 groups as outlined in figure452

7a and 7b.453

3.5. ACO evaluation454

For a comparison, the Vant-Hull (2002) strategy is ap-455

plied as this basic approach for cylindrical receivers is al-456

ready introduced in this paper. Figure 8 presents the flux457

density distributions for an AFD of 800 kWm−2 for both458

strategies, the ACO and the Vant-Hull strategy. The in-459

tercept of the Vant-Hull solution is 93.2%, whereas the460

one of the ACO is 94.5%. This results in a performance461

enhancement of 1.4% and a spillage reduction of 19%.462

The solution of the Vant-Hull strategy exhibits the typ-463

ical two peak regions, one on the upper receiver half and464

one on the lower half, as pictured in figure 8a. Noticeable465

is the poor focus around bin 30 since only flux densities466
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a) Flux density distribution Vant-Hull.
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b) Flux density distribution ACO.

Figure 8: The flux density distribution of the results of the Vant-
Hull strategy and the ACO are presented for a desired AFD of
800 kWm−2.

of maximal 470 kWm−2 are achieved. Consequently, the467

Vant-Hull strategy reaches lower intercepts than possible.468

The flux density distribution of the ACO has a better focus469

as illustrated in figure 8b. Here, 200 groups are used due470

to its strong convergence in the first seconds despite higher471

group numbers result in slightly better results according472

to section 3.3. As recognizable in the figure, the maximal473

flux density slightly exceeds the AFD in 7 of 1500 bins due474

to soft constraints in the optimizer. There, overshoots of475

the flux density are penalized by a factor and not strictly476

forbidden to support the convergence.477

Figure 9 presents the convergence of the ACO for 200478

groups. There, the intercept is plotted over time for AFDs479

between 500 kWm−2 to 1100 kWm−2.480

As initial solution a combination of group-aim-point-481

combinations found by the grouped Flesch-Vant-Hull482

strategy is applied. This solution is found within a second483

as the pre-calculated flux maps are used. The grouped484

Flesch-Vant-Hull strategy does not find valid solutions485

with AFDs below 880 kWm−2 as shown in figure 7b. How-486

ever, even for stricter requirements regarding the AFD,487

this combination of group-aim-point-combinations is still488

a good first guess and the ACO is able to converge from489

there.490

For the reference power plant, the ACO finds solutions491

starting with an AFD of 500 kWm−2 when using the re-492

sult of the grouped Flesch-Vant-Hull strategy as initial so-493

lution. If only the result of the grouped Vant-Hull strategy494

is used as initial solution, results are found starting with495

an AFD of 650 kWm−2.496

Moreover, the best solutions of the original Vant-Hull497

strategy for the reference power plant are outlined by498

dashed horizontal lines in figure 9b. As for 700 kWm−2
499
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Figure 9: The convergence of the ACO is shown for various AFDs of
the reference power plant. Additionally, the results of the grouped
Vant-Hull strategy or rather of the grouped Flesch-Vant-Hull strat-
egy are marked by horizontal lines.

no solution is achieved by the original Vant-Hull strategy,500

the best result of the Flesch-Vant-Hull strategy is visual-501

ized. For lower AFDs, none of these strategies is able to502

solve the problem. Hence, only the results of the ACO are503

presented in figure 9a. The Flesch-Vant-Hull results are504

computed by raytracing for k and ϵ between 0 and 6 with505

a step size of 0.1.506

In general, the results of the Vant-Hull strategy are pre-507

sented as reference to evaluate the quality of the ACO.508

For all tested AFDs, the ACO outperforms the Vant-Hull509

strategy after 1 s to 2 s. The intercept comparison for510

AFDs between 800 kWm−2 to 1100 kWm−2 shows im-511

provements of 1% to 2% after 60 s of optimization du-512

ration. The corresponding spillage reduction amounts to513

19% to 28%. For 700 kWm−2 even an intercept improve-514

ment of 3.6% is accomplished with respect to the Flesch-515

Vant-Hull strategy. Here, a spillage reduction of 31% is516

achieved.517

3.6. Cloud scenario518

Finally, the applicability of the ACO in dynamic en-519

vironments with uneven DNI is analyzed. Therefore, the520

heliostat field is virtually shaded by a DNI map delivered521

by the ASI based nowcasting system described by Nouri522

et al. (2020). Here, a prediction with one minute lead523

time of the 19th of September 2015 at 13:00h is used as524

an example. The shaded field is pictured in figure 10.525

The DNI of the heliostats in the southern part of the field526

is significantly reduced, due to a predicted cloud in this527

area. Here, the maximal DNI is only 882Wm−2 instead528

of 1000Wm−2 used previously. Likewise, the AFD is re-529

duced to 700 kWm−2 for the following evaluation.530

For the partially shaded heliostat field, Vant-Hull strat-
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Figure 10: A real cloud passage predicted by the nowcasting system
described by Nouri et al. (2020) is mapped onto the heliostat field of
the reference power plant.

531

egy and ACO lead to flux density distributions that are532

presented in figure 10. The circumferential bin 0 accounts533

for the south side of the receiver and the vertical bin 0 for534

the lower receiver edge.535

For this uneven distribution, the factor k of the Vant-Hull536

strategy is limited by the flux irradiating from the south-537

west part of the field. There, 700 kWm−2 are reached as538

shown in figure 11a around the circumferential bins ten539

to 15. All other parts of the receiver do not reach this540

AFD. Thus, the intercept is lower than possible and conse-541

quently, more energy than necessary is lost due to spillage.542

The ACO results in a flux density distribution visualized in543

figure 11b. Here, the flux density distribution is a bit bulky544

around the circumferential bins eight to twelve. However,545

in all parts of the receiver still the 700 kWm−2 and a good546

focus around the receiver’s equator are achieved. This re-547

sults in an intercept improvement of 1.9% compared to548

the Vant-Hull solution. The intercept of the ACO solu-549

tion is 0.967, whereas the result of the Vant-Hull strategy550

reaches an intercept of 0.949. Consequently, the spillage551

is reduced by 35%.552

4. Discussion553

The main aim of this study was the reduction of the554

optimization time required by the ACO, while preserving555
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a) Flux density distribution Vant-Hull.
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b) Flux density distribution ACO.

Figure 11: The flux density distribution of the results of the Vant-
Hull strategy and the ACO are pictured for a desired AFD of
700 kWm−2. The results are based on the DNI information illus-
trated in figure 10.

its ability to provide solutions close to the theoretical op-556

timum.557

The results show that the addressed drawback of the ACO,558

the long optimization duration, is resolved. Even for a559

large plant, like the reference power plant, good results560

are achieved after several seconds. This is accomplished561

by evaluating up to 112 billion flux values in a second on a562

GPU. According to Moore’s law the computational power563

of GPUs will increase further in the following years (Sun564

et al., 2019). Moreover, multiple GPUs can be used in565

parallel, if a further reduction of the computational time566

is necessary e.g. for the application in solar multi-tower567

power plants. Simultaneously, the intercept improvement568

of 2% compared to the Vant-Hull strategy as stated by569

Flesch et al. (2017) for the same plant is preserved and570

confirmed in this work.571

Moreover, the ACO becomes more robust by starting from572

an initial solution based on the grouped Vant-Hull strat-573

egy. Compared to the classical Vant-Hull (2002), the574

ACO finds solutions for AFDs that are 270 kWm−2 lower.575

Therefore, the grouped Flesch-Vant-Hull strategy is nec-576

essary as it becomes more important, if the group number577

decreases. This is illustrated in figure 7.578

In the ungrouped case, the Flesch-Vant-Hull strategy re-579

sults in similar intercepts then the original Vant-Hull strat-580

egy. However, if the AFD restrictions become more chal-581

lenging, the Flesch-Vant-Hull strategy finds solutions, even582

if the original Vant-Hull strategy does not. For the refer-583

ence power plant, the Flesch-Vant-Hull strategy solves the584

problem for up to 15% lower AFDs without performance585

loses.586

The flux density distributions found by the ACO are587

slightly spotted as pictured in figures 8b and 11b. The588

irregularities are caused by the limited number of groups589

and aim points. Furthermore, the mirror and tracking er-590

ror in the simulation are set to 2mrad in total. Increasing591

either these errors or the number of groups or aim points592

would lead to a smoother distribution also in the solu-593

tion of the ACO. Moreover, the overshoots over the AFD594

caused by soft constraints in the optimizer do not enhance595

the risk for receiver damage as it only occurs in single bins596

and other errors between simulation and reality are pre-597

sumably larger.598

In addition, an optimal group number exists that achieves599

the best convergence depending on the optimization time,600

the plant size and the strictness of the constraints. If for in-601

stance highly fluctuating weather conditions occur, slightly602

reduced group numbers are favorable to reach faster con-603

vergence without forfeiting too much efficiency. Also, the604

ACO is able to handle uneven DNI distributions since the605

spillage reduction in comparison to the parameter-based606

technique rises clearly compared to the even DNI distri-607

bution.608

In general, the ACO solves the problem for any distribu-609

tion of allowable flux density and is usable for receivers of610

any form. Hence, all kinds of thermal receiver models or611

even chemical reactor models for e.g. the production of612

hydrogen could be connected. Besides, the k-means clus-613

tering technique that is applicable to any kind of heliostat614

field proved its applicability in this study.615

5. Conclusion616

In this paper, the ACO is adopted by a grouping strat-617

egy and supported by starting from a good initial solution618

found by a modified Vant-Hull strategy, which was already619

used by Flesch et al. (2017). Moreover, the ACO is imple-620

mented in cuda. Thus, the optimization can be performed621

on a GPU. As a result, the optimization duration is sig-622

nificantly reduced. Within a few seconds up to a minute,623

intercepts exceeding clearly the intercept of the Vant-Hull624

strategy are provided. At least, 1% to 2% greater inter-625

cepts or rather 19% to 28% less spillage are achieved for626

the reference power plant for all tested AFDs. Moreover,627

solutions are achieved even when the Vant-Hull strategy628

is not applicable anymore due to too strict constraints re-629

garding the AFD.630

In future, a control approach will be developed that is able631

to handle further measurement data like temperature and632

flux density distributions on the receivers surface. Using633

this feedback, the errors between simulation and reality634

should be reduced, which cannot be modeled by raytracing635

and consequently, cannot be represented within the ACO.636

In addition, the time gap during optimization should be637

filled by this control approach as the optimization still re-638

quires several seconds up to a minute for greater plants.639

Furthermore, an aim point management system should be640

developed that is able to evaluate nowcasting data in order641

to propose a certain control strategy. Finally, the system642

9



that will include the ACO and the control approach should643

be tested in the solar tower power plant in Jülich.644
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