Raumer, Hans-Georg und Ernst, Daniel und Spehr, Carsten (2022) Compensation of Modeling Errors for the Aeroacoustic Inverse Problem with Tools from Deep Learning. Acoustics, 4 (4), Seiten 834-848. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/acoustics4040050. ISSN 2624-599X.
PDF
- Verlagsversion (veröffentlichte Fassung)
783kB |
Offizielle URL: https://doi.org/10.3390/acoustics4040050
Kurzfassung
In the field of aeroacoustic source imaging one seeks to reconstruct acoustic source powers from microphone array measurements. For most setups one cannot expect a perfect reconstruction. The main effects that contribute to this reconstruction error are data noise and modelling errors. While the data noise is accounted for in most advanced reconstruction methods e.g. by a proper regularization strategy, the modelling error is usually neglected. This article proposes an approach that extends regularized inverse methods with a mechanism that takes modelling error into account. The presented algorithmic framework utilizes the representation of the FISTA algorithm by a neural network and uses standard gradient schemes from the field of deep learning. It is directly applicable to a single measurement i.e. a prior training phase on previously generated data is not required. The capabilities of the method are illustrated by several numerical examples.
elib-URL des Eintrags: | https://elib.dlr.de/189099/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Zusätzliche Informationen: | Received: 24 August 2022 / Revised: 18 September 2022 / Accepted: 23 September 2022 / Published: 27 September 2022 https://www.mdpi.com/2624-599X/4/4/50 | ||||||||||||||||
Titel: | Compensation of Modeling Errors for the Aeroacoustic Inverse Problem with Tools from Deep Learning | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 27 September 2022 | ||||||||||||||||
Erschienen in: | Acoustics | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 4 | ||||||||||||||||
DOI: | 10.3390/acoustics4040050 | ||||||||||||||||
Seitenbereich: | Seiten 834-848 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||
ISSN: | 2624-599X | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | aeroacoustics, inverse source problem, model error, neural network | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||
HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Virtuelles Flugzeug und Validierung | ||||||||||||||||
Standort: | Göttingen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > Experimentelle Verfahren, GO | ||||||||||||||||
Hinterlegt von: | Micknaus, Ilka | ||||||||||||||||
Hinterlegt am: | 13 Dez 2022 10:17 | ||||||||||||||||
Letzte Änderung: | 03 Jul 2023 12:21 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags