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Abstract: In the field of aeroacoustic source imaging, one seeks to reconstruct acoustic source powers
from microphone array measurements. For most setups, one cannot expect a perfect reconstruction.
The main effects that contribute to this reconstruction error are data noise and modeling errors.
While the data noise is accounted for in most advanced reconstruction methods, e.g., by a proper
regularization strategy, the modeling error is usually neglected. This article proposes an approach that
extends regularized inverse methods with a mechanism that takes the modeling error into account.
The presented algorithmic framework utilizes the representation of the Fast Iterative Shrinkage
Thresholding Algorithm (FISTA) algorithm by a neural network and uses standard gradient schemes
from the field of deep learning. It is directly applicable to a single measurement, i.e., a prior training
phase on previously generated data is not required. The capabilities of the method are illustrated by
several numerical examples.
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1. Introduction

Reconstruction of acoustic sources from aeroacoustic measurements has been an
active field of research for many decades [1–5]. As aeroacoustic measurements are usually
conducted in environments that are subject to random processes (such as wind tunnels),
reconstruction procedures are usually based on cross spectral data, i.e., correlations in the
frequency domain. There exist various source power reconstruction methods for correlation
data such as Beamforming (see, e.g., [6]), CLEAN-SC [7], DAMAS [8] or Covariance Matrix
Fitting also known as CMF (see, e.g., [9,10]). In this article, we will present an approach
based on a regularized version of CMF.

Usually, source power estimations can only provide an approximation of the ground
truth source powers, and there are two main causes for this reconstruction error. Firstly,
data noise, which can be treated by suitable regularization. Secondly, modeling errors,
i.e., usage of a physical sound propagation model that does not exactly match to conditions
of the measurement environment. In this article, we present an approach that extends
regularized CMF with additional degrees of freedom (DOFs) in order to take modeling
errors into account. Here, we will only consider additional DOFs for the phase of the sound
propagation matrix, as this is much more affected by modeling errors than the amplitudes.
The proposed method is based on the Fast Iterative Shrinkage Thresholding Algorithm
(FISTA) optimization algorithm, originally proposed by Beck & Teboulle for `1-regularized
least squares [11], which is an accelerated version of the iterative shrinkage-thresholding (ISTA)
algorithm (see, e.g., [12,13]). Several variants of this algorithm have also been applied in the
field of aeroacoustics [14–17]. Moreover, the principle of unrolling is used here. Unrolling
means that a fixed number of (F)ISTA iterations is represented by a neural network, where
the number of layers matches the number of (F)ISTA iterations (see, e.g., [18]).

As we employ tools from machine learning, in particular deep learning, we would
like to relate our approach to other data-driven methods in inverse problems, respectively,
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acoustic source imaging. On the one hand, there exist purely data-driven approaches
that fully learn the source power reconstruction [19–22]. Our approach is a hybrid one,
i.e., it combines model-based methods with principles from machine learning. Other
hybrid approaches in inverse problems are, for example, learned regularizers [23,24] or
learned operator correction [25]. The concept of unrolling, which can also be seen as an
hybrid approach, has been employed for Learned ISTA (LISTA) [26,27] and Trainable ISTA
(TISTA) [28,29], which both optimize or learn some parameters of the ISTA algorithm. The
latter one has recently been applied to acoustic source imaging [30]. The main principle
for the compensation of the modeling error effects used in this work is motivated by ideas
from Regularized Total Least Squares [31,32] and the Deep Inverse Prior [33]. The regularized
cost function that measures the data misfit between modeled and measured data is opti-
mized not only with respect to the source powers but additionally with respect to sound
propagation parameters. In contrast to most machine learning frameworks, this approach
does not include a prior training period on previously simulated or measured training data.
Hence, it can be applied to a single measurement. We would like to emphasize that in this
article, we focus on the presentation of the main ideas and a proof of concept to estimate
the capabilities of the method. Hence, this is only the first step towards an applicability for
real measurement scenarios.

2. Problem Modeling

Let c denote the speed of sound, u ∈ R3 a constant convection field, and m = u
c the

Mach vector. Moreover, we consider subsonic convection, i.e., it is assumed that ‖m‖2 < 1.
The standard sound propagation model that is employed in experimental aeroacoustics
is the convected Helmholtz equation which describes time harmonic sound propagation
within the convection field u

(k− im · ∇)2 p + ∆p = −s . (1)

In Equation (1), k = ω
c denotes the wavenumber, where ω = 2π f the angular frequency

and f the frequency. Further, p denotes the complex pressure field and s a generic source.
Note that the time factor convention e+iωt is used. The free field Green’s function for the
convected Helmholtz equation is given by

g(x, y) =
exp

(
−ik

1−‖m‖2
2
(−(x− y) ·m + ‖x− y‖m)

)

4π‖x− y‖m
. (2)

where the Mach norm is defined by

‖z‖m =
√
(z ·m)2 + β2‖z‖2

2 ,

with β2 = 1− ‖m‖2
2. Although the formulation (2) ignores any geometric features of the

measurement setup (e.g., presence of walls), the free field Green’s function is widely used
for source power reconstruction in experimental aeroacoustics as it provides robust results.

The discrete forward model is set up as follows. The map domain, i.e., the regions
where sources are assumed is discretized by N focus positions y1, . . . , yN and the positions
of the array microphones are denoted by x1, . . . , xM. The pressure signal at the array and
the source signal at the focus positions are given by

p(ω) =




p(x1, ω)
...

p(xM, ω)


 and s(ω) =




s(y1, ω)
...

s(yN , ω)


 .
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As the measurement environment is subject to random processes, both the pressure
signal p(ω) ∈ CM and the source signal s(ω) ∈ CN are considered as random variables
with zero mean. The propagation matrix G ∈ CM×N defined by

Gmn = g(xm, yn) , (3)

determines the linear relation between source and array signal

p = Gs .

Taking the correlation matrix of p, we obtain

C := E
{

ppH
}
= G E

{
ssH

}
GH ,

where H denotes the Hermitian transpose. The matrix C is usually denoted as cross
spectral matrix (CSM). A standard assumption in experimental acoustics, which will also
be employed here, is the assumption of spatially uncorrelated sources. This means that the
correlation matrix of the source signal is given by a diagonal matrix, i.e.,

E
{

ssH
}
= Mq = diag(q1, . . . , qN) with q =

(
E
{
|s1|2

}
, . . . ,E

{
|sN |2

})>
.

The vector q will be denoted as source power vector in the following. Finally, the discrete
inverse problem can be stated as follows: given a CSM C ∈ CM×M, find a source power
vector q ∈ RN such that

G Mq GH = C .

For the further analysis, we introduce the discrete forward operator

C(q) = G Mq GH (4)

and its adjoint operator

C∗(K) = diag
(

GH K G
)

, for K ∈ CM×M . (5)

3. Source Power Reconstruction with FISTA

For real experimental data, only a noisy approximation Cobs of the true CSM C is
available. Therefore, an appropriate source power reconstruction technique is the following
regularized version of Cross Spectral Matrix Fitting (CMF) [9,10]

q̂(α1,α2)
= argmin

q≥0

1
2

∥∥∥GMqGH − Cobs
∥∥∥

2

F
+R(q) , (6)

where the penalty functionalR is given by

R(q) = α1‖q‖1 + α2
1
2
‖q‖2

2

and α1, α2 ≥ 0 denote the regularization parameters. The L1 penalty promotes a sparse
source power vector, which is a realistic assumption for many aeroacoustic measurements.
The L2 penalty ensures that the minimization problem has a unique solution. The objective
function in Equation (6) can be efficiently minimized using the framework of the generalized
Fast Iterative Shrinkage Thresholding Algorithm (FISTA) (p. 291, [34]). The principle of the
FISTA algorithm is to repeat an alternating application of the following two operations:

• A gradient step with respect to the first summand of the objective function;
• Application of the proximal mapping (see Definition 6.1, p. 129, [34]) of the regulariza-

tion part.
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An implementation of this generic method for the specific problem (6) is given in
Algorithm 1.

We conclude this section with some remarks on the implementation.

• The most expensive step in Algorithm 1 is the evaluation of C∗C, which corresponds
to line 7 and 8. By exploiting the multiplicative structure (see Equations (4) and (5)),
this can be implemented efficiently (see [35]).

• To ensure convergence, the step size τ must satisfy

τ <

(
sup

q∈RN ,x 6=0

‖C∗C(q)‖2
‖x‖2

)−1

,

where the upper bound may be estimated, e.g., by the power method (see p. 239, [36]).
• As the observed CSM Cobs is Hermitian, the upper diagonal part can be neglected.

Therefore, S denotes the index set of the lower triangular part of the CSM. The
operation trilS (()·) sets all entries to zero that do not belong to S . Moreover, the
principle of diagonal removal can be easily incorporated by defining S as the lower
triangular indices without the diagonal.

• The operation v(n) � GH multiplies each column of GH component-wise by the
vector v(n).

• The operation (·)+ takes the positive part component-wise, i.e., (x)+ = max(x, 0).

Algorithm 1: FISTA with mixed L1 + L2 penalty

input : G ∈ CM×N propagation matrix , Cobs ∈ CM×M observed correlation data,
q(0) ∈ RN starting value, α1, α2 > 0 regularization parameters, S index
subset of lower triangular part, τ > 0 stepsize, niter number of maximum
iterations

output : q(niter) ∈ RN approximation of q̂(α1,α2)
(6)

1 Cobs := trilS
(

Cobs
)

// Prepare correlation data

2 t0 := 0; q(−1) := q(0); z := Re
(

diag
(

GHCobsG
))

// Initialization

3 for n = 0, . . . , niter − 1 do
4 tn+1 := 1

2

(
1 +

√
1 + 4t2

n

)

5 βn := tn −1
tn+1

6 v(n) := q(n) + βn(q(n) − q(n−1))

7 V(n) := trilS
(

G (v(n) �GH)
)

8 w(n) := v(n) − τ
(

Re
(

diag
(

GHV(n)G
))
− z
)

9 q(n+1) :=
(

w(n)−τα1
α2τ+1

)+
// Apply proximal mapping

10 end

4. Optimization of Phase Modeling Parameters

For most measurement scenarios, the free-field sound propagation matrix G (Equa-
tions (2) and (3)) is only an approximation of the true sound propagation. In this section, we
will derive a framework that adds more degrees of freedom to the reconstruction process
in order to compensate for this modeling error. Note that the propagation matrix G can be
expressed as

G = R� exp(iΦ) ,

where R, Φ ∈ RM×N are the amplitude and phase matrices, respectively, � denotes the
component-wise or Hadamard product and the exponential also operates component-wise.
For the entire article, we assume that the amplitude matrix R is sufficiently well known but
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the phase matrix Φ is perturbed by a modeling error. In most measurement scenarios, the
modeling of R is usually much more accurate than the modeling of the phase.

4.1. Unrolled FISTA

Let R be given and fixed, then for each phase matrix Φ, we can define the correspond-
ing Tikhonov minimizer

q̂(Φ) = argmin
q≥0

1
2

∥∥∥[R� exp(iΦ)]Mq[R� exp(iΦ)]H − Cobs
∥∥∥

2

F
+R(q) . (7)

As outlined in the last section, this minimizer can be efficiently approximated by niter
steps of the FISTA algorithm (see Algorithm 1). Moreover, the FISTA algorithm with a
fixed number of iterations can be regarded as the application of a neural network F with
niter layers. The general principle of representing iterative optimization algorithms as
neural networks is usually referred to as algorithm unrolling. For an extensive review on the
principle of algorithm unrolling, we refer to the review article [18]. The specific case that is
employed here (unrolling the FISTA algorithm), will be described in detail below.

For the computation of one FISTA iteration, one needs the pair of the last two iterates,
denoted by (q, q′) in the following. Lines 6–8 in Algorithm 1 perform the accelerated
gradient step. The computation of each line can be represented by a corresponding function

ag1
(
(q, q′

)
, β) = q + β(q− q′) ,

ag2(v, R, Φ) = trilS
(
[R� exp(iΦ)] (v� [R� exp(iΦ)]H)

)
,

ag3
(

v, V, R, Φ, τ, Cobs
)
= v− τRe

(
diag

(
[R� exp(iΦ)]H

[
V− Cobs

]
[R� exp(iΦ)]

))
.

The entire accelerated gradient step can be represented by a concatenation of the functions
defined above

ags
(
(q, q′), R, Φ, τ, β, Cobs

)
=
(

ag3
(

ag1(q, q′, β), ag2(v, R, Φ), R, Φ, τ, Cobs
)

, q
)

. (8)

Note that the function ags (8) is linear with respect to its first argument. In the context
of neural networks, line 9 of Algorithm 1 can be interpreted as the application of a non-
linear activation function. For a pair of vectors (w, q), we therefore define the activation
function of the neural network as

proxAc((w, q), τ, α1, α2) =

((
w− τα1

α2τ + 1

)+

, q

)
. (9)

Note that the activation function proxAc (9) applies the nonlinear proximal mapping
on the first component w and simply keeps the second component q, as the previous two
iterates are needed for the next FISTA iteration.

With the propagation function ags (8) and the activation function proxAc (9), we can inter-
pret the FISTA algorithm as a feed-forward neural network with the following characteristics:

• The set of trainable parameters of F are the entries of the phase matrix Φ. Those are
shared for each layer. Note that the set of trainable and non-trainable parameters can
be varied but we will restrict our investigations to the case where Φ is trainable.

• The starting value q(0) is the data input of the neural network and is transformed to

the pair
(

q(0), q(0)
)

before the first layer.

• The network consists of niter layers, where each layer represents one FISTA iteration.
In each layer, the following two operations are applied to the pair (q, q′):

1. The current pair is propagated forward by linear operations, encoded in ags (8),
which essentially depend on the trainable parameters Φ and the non-trainable
parameters R, Cobs, τ, βn, α1, α2.
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2. After the propagation step, the activation function proxAc (9) is applied.

• After the last layer, the output pair
(

q(niter), q(niter−1)
)

is transformed to the final

output q(niter).

A sketch of the framework of the neural network F is presented in Figure 1.

q(0)

(
q(0),q(0)

)

ags
(
:,R,Φ, τ, β0,C

obs
)

proxAc (:, τ, α1, α2)

(
q(1),q(0)

)

ags
(
:,R,Φ, τ, β1,C

obs
)

proxAc (:, τ, α1, α2)

(
q(2),q(1)

)

...

(
q(niter),q(niter−1)

)

q(niter)

Figure 1. Sketch of the unrolled FISTA network F . One forward pass through the network is
equivalent to the application of niter FISTA iterations. Green bounding boxes indicate one iteration of
the FISTA algorithm, trainable parameters are marked in blue.

Denote by FΦ

(
q(0)

)
the output of the neural network for starting value q(0) and

phase parameters Φ. Using this notation and the definition of the Tikhonov minimizer
q̂(Φ) (7), we get the approximation

q̂(Φ) ≈ FΦ

(
q(0)

)
. (10)
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4.2. Constrained Residual Minimization

In a scenario where the phase of the propagation is subject to a modeling error, this
will affect the accuracy of the Tikhonov minimizer q̂(Φ). To account for this modeling error
in the minimization process, we consider the following constrained problem

min
Φ

1
2

∥∥∥[R� exp(iΦ)]Mq̂(Φ)[R� exp(iΦ)]H − Cobs
∥∥∥

2

F

subject to q̂(Φ) = argmin
q≥0

1
2

∥∥∥[R� exp(iΦ)]Mq[R� exp(iΦ)]H − Cobs
∥∥∥

2

F
+R(q) .

Using the approximation (10) and replacing the constraint, we get the following
unconstrained problem

min
Φ

∥∥∥[R� exp(iΦ)]MFΦ(q(0))[R� exp(iΦ)]H − Cobs
∥∥∥

2

F
=: min

Φ
J (Φ) . (11)

Note that we also omitted the factor 1
2 in front of the residual as it does not affect

minimizers. The problem (11) is a minimization problem with respect to the trainable neural
network parameters Φ. Hence, the loss function in (11) can be minimized by standard tools
(i.e., gradient descent schemes) for the training of neural networks. A generic gradient
descent scheme G receives the current network parameters, the gradient of the cost function
with respect to the network parameters, the learning rate, and potentially other parameters
as in input and returns the updated network parameters. Typical examples for such schemes
G are standard gradient descent, gradient descent with momentum or ADAM [37]. The
whole procedure to minimize J with a generic gradient descent optimizer G is summarized
in Algorithm 2.

Algorithm 2: Gradient descent minimization scheme for the solution of (11).

input :F unrolled FISTA network, q(0) ∈ RN starting value/neural network
input, Φ0 ∈ RM×N initial phase/network parameters, G
optimizer/gradient descent scheme, lr> 0 learning rate/gradient step
size, ngrad number of gradient steps

output : Φ(ngrad) ∈ RM×N approximate minimizing phase in (11)
1 for n = 0, . . . , ngrad − 1 do

2 evaluate F
Φ(n)

(
q(0)

)
// Forward pass through network

3 evaluate J
(

Φ(n)
)

// Cost function

4 evaluate ∇J
(

Φ(n)
)

// Gradient

5 Φ(n+1) = G
(

Φ(n),∇J
(

Φ(n)
)

, lr
)

// Optimization step

6 end

5. Numerical Examples

To examine the performance of the designed problem (11), we consider a simple
numerical example with four monopole sources. This setup has also been used in previous
publications for synthetic benchmark computations [38]. The microphone array has an
aperture of d = 1.5 m and consists of 64 microphones positioned in the x-y plane, where
the center microphone is located at (0, 0, 0)>. The focus plane is positioned at z = 0.75 m
with x, y ∈ [−0.2 m, 0.2 m]. All computations are done using an equidistant focus grid with
resolution ∆xy = 0.02 m which results in N = 441 focus points in total, denoted by yn.

Data generation: We consider a convective field with Mach vector m = (0.2, 0, 0)>,
speed of sound c = 343 m

s . The data are generated for three Helmholtz numbers He = f d
c

with values He ∈ {8, 16, 32}. The exact correlation matrix, propagation matrix and source
power vector are denoted by Cexact ∈ CM×M, Gexact ∈ CM×N and q† ∈ RN . In order
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to generate also noisy data Cobs ∈ CM×M, we draw nsamp = 1000 pressure samples
according to

p(j) = Gexact
(

η(j) �
√

q†
)
+ δε(j) for j = 1, . . . , nsamp, δ ≥ 0 . (12)

In (12), � denotes pointwise multiplication and the vectors η(j) ∈ CM, ε(j) ∈ CN are
sampled independently from vector-valued, standard complex normal random variables η
and ε

η ∼ [NC(0, 1)]N , ε ∼ [NC(0, 1)]M, η ⊥ ε .

The level of the additive noise δ is chosen such that

δ =

√
M · 0.05

∑M
m=1|Cexact

mm |
.

Thus, for nsamp → ∞, the average relative perturbation of the diagonal of the correlation
matrix is approximately 5%. Noisy data are then obtained by

Cobs =
1

nsamp

nsamp

∑
j=1

p(j)p(j)H
.

The neural network FΦ is set up using the fixed source input q(0) = (0, . . . , 0)>,
niter = 100 layers (i.e., FISTA iterations) and regularization parameters α1 = 10−5, α2 = 10−7

for all examples. Figure 2 shows the exact source powers and the reconstructed source
powers for He = 16 using 100 FISTA iterations and the exact propagation matrix Gexact.
Reconstruction with the correct propagation model leads to an reconstruction error of 7.49.

−0.1 0 0.1

−0.1

0

0.1

5 10 15 20

SPL [dB]

(a)

−0.1 0 0.1

−0.1

0

0.1

5 10 15 20

SPL [dB]

(b)
Figure 2. Reference solutions for numerical example. (a) Exact solution; (b) FISTA solution with exact
phase (

∥∥q− q†
∥∥

2 = 7.49).

5.1. Systematic Modeling Error

As a first example, we consider a systematic phase modeling error by slightly per-
turbing the Mach vector by 5% from m = (0.2, 0, 0)> to m = (0.19, 0, 0)>. The resulting
erroneous phase matrix is denoted by Φsyst. The residual optimization (11) is done using
Python and TensorFlow [39], where the used hyperparameter values are summarized in
Table 1.
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Table 1. Hyperparameter values used for the gradient descent scheme.

Optimization algorithm Gradient descent with Nesterov momentum (p. 353, [40])
Learning rate lr = 10−3

Momentum parameter momentum = 0.9
Gradient descent steps ngrad = 200

Figure 3a shows the result for the FISTA reconstruction, the systematically perturbed
propagation matrix R� exp Φsyst, and Figure 3b the result of the residual minimization
(see (11)) with initial network parameters Φsyst. We observe that the perturbed flow mag-
nitude leads to an error in the source location. As the source grid is relatively coarse, the
main peak of each source is distributed over two source grid points. This effect of the
systematic model error cannot be compensated by the neural network method, i.e., both
methods produce a reconstruction error of the same order of magnitude.

−0.1 0 0.1

−0.1

0

0.1

5 10 15 20

SPL [dB]

(a)

−0.1 0 0.1

−0.1

0

0.1

5 10 15 20

SPL [dB]

(b)
Figure 3. Solutions for numerical example with systematic phase perturbation. (a) FISTA solution
with perturbed phase (

∥∥q− q†
∥∥

2 = 106.61); (b) FISTA solution after phase error compensation
(
∥∥q− q†

∥∥
2 = 104.46).

5.2. Random Modeling Error

Secondly, we consider an example with a random perturbation of the phase of the
propagation matrix. Such deviations from the true propagation model may occur, e.g., due
to small measurement errors of the microphone positions. Recall the definition of the travel
times between microphone and source positions (see Equation (2))

∆tmn =
−(xm − yn) ·m + ‖xm − yn‖m

c β2 .

By means of the average travel time

∆t =
1

N M

M

∑
m=1

N

∑
n=1

∆tmn ,

the perturbed phase matrix is defined as

Φrand = Φexact + (−2π f )σ ∆t E .

Here, E is a matrix-valued standard Gaussian random variable and σ denotes noise power

E ∼ [N (0, 1)]M×N σ = 5 · 10−3 .
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The noise power level σ is chosen such that

E
(∥∥∥R� exp

(
iΦrand

)
−Gexact

∥∥∥
F

)
≈
∥∥R� exp

(
iΦsyst)−Gexact∥∥

F .

Hence, the perturbation of the propagation matrix has the same order of magnitude
for both noise categories (systematic and random).

Figure 4 shows the reconstruction results for an exemplary realization of the randomly
perturbed phase matrix Φrand along with the result of the neural network residual mini-
mization (see (11)). In contrast to the systematic error case, the setup is now able to strongly
improve the reconstruction result. The final error is of the same order of magnitude as
for the FISTA reconstruction with the correct propagation matrix. As this example yields
promising results, we consider a small parameter study for three Helmholtz numbers
He ∈ {8, 16, 32} and navg = 100 random noise realizations each. To evaluate the capa-
bilities of the neural network residual minimization, several statistical measures will be
considered.

−0.1 0 0.1

−0.1

0

0.1

5 10 15 20

SPL [dB]

(a)

−0.1 0 0.1

−0.1

0

0.1

5 10 15 20

SPL [dB]

(b)
Figure 4. Solutions for numerical example with random phase perturbation. (a) FISTA solution
with perturbed phase (

∥∥q− q†
∥∥

2 = 106.31); (b) FISTA solution after phase error compensation
(
∥∥q− q†

∥∥
2 = 6.56).

Firstly, the j-th perturbed phase realization after the n-th gradient step is denoted by

Φ(j, n) for j = 1, . . . , navg; n = 0, . . . , ngrad .

The cost value (residual) of each individual perturbed phase realization after n gradient
descent steps is defined by

cost(j, n) = J (Φ(j, n)) j = 1, . . . , navg; n = 0, . . . , ngrad .

Refer to Equation (11) for the definition of the cost function J . The average cost over all
noise realizations after n gradient descent steps and the reference cost for the reconstruction
with the correct propagation matrix are given by

cost(n) =
1

navg

navg

∑
j=1

cost(j, n) costref = J
(
Φexact) .
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As a measure of variation among the ensemble, we consider the average positive and
negative deviation of cost value measures for each gradient descent step

cost+dev(n) =

∑
cost(j,n)≥cost(n)

∣∣∣cost(j, n)− cost(n)
∣∣∣

∑
cost(j,n)≥cost(n)

1

cost−dev(n) =

∑
cost(j,n)<cost(n)

∣∣∣cost(j, n)− cost(n)
∣∣∣

∑
cost(j,n)<cost(n)

1
.

Similarly, for the reconstruction errors, the source power vector for each noise realization
after n gradient descent steps in (11) is denoted by

q(j, n) for j = 1, . . . , navg; n = 0, . . . , ngrad

and the corresponding error is

err(j, n) =
∥∥∥q(j, n)− q†

∥∥∥
2

j = 1, . . . , navg; n = 0, . . . , ngrad .

Again, the average reconstruction error for each gradient descent step and the reference
reconstruction error are defined by

err(n) =
1

navg

navg

∑
j=1

err(j, n) errref =
∥∥∥FΦexact

(
q(0)

)
− q†

∥∥∥
2

and the average positive and negative deviations by

err+dev(n) =

∑
err(j,n)≥err(n)

∣∣∣err(j, n)− err(n)
∣∣∣

∑
err(j,n)≥err(n)

1

err−dev(n) =

∑
err(j,n)<err(n)

∣∣∣err(j, n)− err(n)
∣∣∣

∑
err(j,n)<err(n)

1
.

Figure 5 shows the previously introduced statistical measures for each gradient descent
step and for Helmholtz numbers He ∈ {8, 16, 32}. For all cases, the mean cost and mean
error reach the optimal level of the reference cost and error (dotted line), respectively, after
50–100 gradient descent steps. This shows that for the chosen parameter setup, the method
is able to recover solutions of the same error level starting with an erroneous propagation
matrix compared to source power reconstruction with the correct propagation matrix.
Moreover, the method seems to be robust with respect to additional gradient descent
iterations. After the optimal cost and error level are reached, the values stagnate there.

Even though this is still a rather simple synthetic example, the robustness and accuracy
of the results with respect to the reconstruction of q are remarkable. The setup considers
M = 64 microphones, i.e., M(M+1)

2 = 2080 correlation datapoints and N = 441 focus
points. This leads to M · N = 28,224 degrees of freedom (DOFs) for the phase perturbation
within the residual minimization. Hence, even for this scenario, problem (11) is heavily
underdetermined. Therefore, one should not expect to recover the correct phase matrix
Φexact, at least not in such a setup with much more DOFs than datapoints.
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Figure 5. Cost and error graphs for several Helmholtz numbers. The colored area indicates the
interval cost(n)± 2 cost±dev(n) and err(n)± 2 err±dev(n).
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6. Conclusions

In this article, we suggested a framework that accounts for modeling errors in the
aeroacoustic source power reconstruction problem. We presented an approach that extends
acoustic source power reconstruction based on the FISTA algorithm with additional degrees
of freedom (DOFs) that allow a variation of the modeled sound propagation. We restricted
our investigations on a variation of the phase of the propagation matrix as this is usually
much more affected by the modeling error than the amplitude. Our framework uses the un-
rolling principle which represents the FISTA optimization by a neural network. The actual
optimization with respect to the phase parameters can the be accomplished by standard
gradient descent schemes from deep learning. In principle, the neural network representa-
tion is not explicitly needed to define the proposed method. However, the great advantage
of such a representation is that it leads to a straightforward and efficient implementation
using the automatic differentiation abilities of deep learning software packages.

Our results should be seen as a proof of concept for the suggested algorithmic frame-
work. Certainly, this is still work in progress and several more steps are needed to make it
usable for experimental data.

The numerical examples show that this approach has the potential to improve source
power reconstruction results that are subject to modeling error effects. For random phase
perturbations, the algorithm yields very good results in the chosen setup. However, this
was a rather friendly setup, where the number of DOFs was approximately 10 times larger
than the number of correlation datapoints. For realistic measurement scenarios, this relation
becomes even worse. Therefore, in order to move to an application on real experimental
datasets, one has to reduce the number of DOFs in the method. Here, we used a brute
force strategy where each phase parameter could be varied independently. Alternatively,
one may choose a physically motivated parametric phase perturbation model with P
parameters, where P� M · N. The examples with the systematic phase perturbation show
that the brute force approach is not well suited if the true perturbation is based on much less
DOFs, in this case only one. Further research on this algorithmic approach should examine
the performance of the presented framework using parametric perturbations based on the
variation of physical parameters such as microphone positions, angle of attack, free stream
velocity or speed of sound.
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