Roy, Arindam and Hammer, Annette and Heinemann, Detlev and Lünsdorf, Ontje and Lezaca, Jorge (2022) Impact of tropical convective conditions on solar irradiance forecasting based on cloud motion vectors. Environmental Research Letters, 17 (10), pp. 1-18. Institute of Physics (IOP) Publishing. doi: 10.1088/1748-9326/ac94e6. ISSN 1748-9326.
PDF
- Published version
3MB |
Official URL: https://iopscience.iop.org/article/10.1088/1748-9326/ac94e6
Abstract
Intra-day forecasts of global horizontal solar irradiance (GHI) are widely produced by displacing existing clouds on a geo-stationary satellite image to their future locations with cloud motion vectors (CMVs) derived from preceding images. The CMV estimation methods assume rigid cloud bodies with advective motion, which performs reasonably well in mid-latitudes but can be strained for tropical and sub-tropical climatic zones during prolonged periods of seasonal convection. We study the impact of the South Asian monsoon time convection on the accuracy of CMV based forecasts by analysing 2 years of forecasts from three commonly used CMV methods—Block-match, Farnebäck (Optical flow) and TV-L1 (Optical flow). Forecasted cloud index (CI) maps of the entire image section are validated against analysis CI maps for the period 2018–2019 for forecast lead times from 0 to 5.5 h. Site-level GHI forecasts are validated against ground measured data from two Baseline Surface Radiation Network stations—Gurgaon (GUR) and Tiruvallur (TIR), located in hot semi-arid and tropical savanna climatic zones respectively. The inter-seasonal variation of forecast accuracy is prominent and a clear link is found between the increase in convection, represented by a decrease in outgoing longwave radiation (OLR), and the decrease in forecast accuracy. The GUR site shows the highest forecast error in the southwest monsoon period and exhibits a steep rise of forecast error with the increase in convection. The highest forecast error occurs in the northeast monsoon period of December in TIR. The impact of convection on the number of erroneous time blocks of predicted photovoltaic production is also studied. Our results provide insights into the contribution of convection to errors in CMV based forecasts and shows that OLR can be used as a feature in future forecasting methods to consider the impact of convection on forecast accuracy.
Item URL in elib: | https://elib.dlr.de/189016/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Impact of tropical convective conditions on solar irradiance forecasting based on cloud motion vectors | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 12 October 2022 | ||||||||||||||||||||||||
Journal or Publication Title: | Environmental Research Letters | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 17 | ||||||||||||||||||||||||
DOI: | 10.1088/1748-9326/ac94e6 | ||||||||||||||||||||||||
Page Range: | pp. 1-18 | ||||||||||||||||||||||||
Publisher: | Institute of Physics (IOP) Publishing | ||||||||||||||||||||||||
ISSN: | 1748-9326 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | global horizontal irradiance (GHI), intra-day forecast, satellite image, Heliosat method, monsoon, tropical convection, inter-seasonal variability | ||||||||||||||||||||||||
HGF - Research field: | Energy | ||||||||||||||||||||||||
HGF - Program: | Energy System Design | ||||||||||||||||||||||||
HGF - Program Themes: | Energy System Transformation | ||||||||||||||||||||||||
DLR - Research area: | Energy | ||||||||||||||||||||||||
DLR - Program: | E SY - Energy System Technology and Analysis | ||||||||||||||||||||||||
DLR - Research theme (Project): | E - Systems Analysis and Technology Assessment | ||||||||||||||||||||||||
Location: | Oldenburg | ||||||||||||||||||||||||
Institutes and Institutions: | Institute of Networked Energy Systems > Energy Systems Analysis, OL | ||||||||||||||||||||||||
Deposited By: | Roy, Arindam | ||||||||||||||||||||||||
Deposited On: | 02 Nov 2022 12:42 | ||||||||||||||||||||||||
Last Modified: | 29 Mar 2023 00:02 |
Repository Staff Only: item control page