Moreno, Mario and Semmling, Maximilian and Stienne, Georges and Dalil, Wafa and Hoque, Mohammed Mainul and Wickert, Jens and Reboul, Serge (2022) Atmospheric effects resolved in airborne GNSS reflectometry by data fusion processing. In: Workshop on Data Science for GNSS Remote Sensing. Workshop on Data Science for GNSS Remote Sensing, 2022-06-13 - 2022-06-16, Postdam.
PDF
1MB |
Official URL: https://www.d4g-2022.de/assets/moreno_mario_atmospheric_effects_resolved_in_airborne_gnss.pdf
Abstract
The advent of the Global Satellite Navigation Systems (GNSS) allowed the emergence of multiple satellite, airborne and terrestrial systems for remote sensing and Earth observation that make use of GNSS signals for navigation and positioning. However, GNSS signals can be also used as a remote sensing technique to obtain characteristics of the Earth's surface once they get reflected. This technique is nowadays called GNSS Reflectometry (GNSS-R) and offers different applications such as sea state, soil moisture, and sea ice concentration. GNSS reflectometry relies on bistatic radar configuration. Therefore, it is necessary to integrate multiple data sources to produce more accurate, useful, and consistent information from the transmitter-surface-receiver interaction. In this study, we fuse GNSS and ancillary data to resolve the tropospheric residual from the signal path change over the observed period. The experiment consisted of four flights performed with a gyrocopter in July 2019 along the coast between Calais and Boulogne-Sur-Mer, France. The processing comprises the integration of aircraft trajectory, broadcasted GNSS satellites orbits, and geoid model for direct and reflected signal path difference modeling. The latter is used for GNSS-R data processing by means of a model-aided software receiver. The resulting reflected signal is passed through a retracking module to obtain the corrected phase residual observable comparable with the tropospheric residual retrieved from ray-tracing modeling. Initial results have shown promising performance at calm sea and grazing angles. Satellites with low elevations (E < 10°) reveal coherent observations that allow resolving atmospheric effects from GNSS-R airborne data.
Item URL in elib: | https://elib.dlr.de/188813/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Other) | ||||||||||||||||||||||||||||||||
Title: | Atmospheric effects resolved in airborne GNSS reflectometry by data fusion processing | ||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||
Date: | 13 June 2022 | ||||||||||||||||||||||||||||||||
Journal or Publication Title: | Workshop on Data Science for GNSS Remote Sensing | ||||||||||||||||||||||||||||||||
Refereed publication: | No | ||||||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||
Keywords: | GNSS-R, data fusion, atmospheric effects | ||||||||||||||||||||||||||||||||
Event Title: | Workshop on Data Science for GNSS Remote Sensing | ||||||||||||||||||||||||||||||||
Event Location: | Postdam | ||||||||||||||||||||||||||||||||
Event Type: | Workshop | ||||||||||||||||||||||||||||||||
Event Start Date: | 13 June 2022 | ||||||||||||||||||||||||||||||||
Event End Date: | 16 June 2022 | ||||||||||||||||||||||||||||||||
Organizer: | GFZ | ||||||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||||||
HGF - Program Themes: | Communication, Navigation, Quantum Technology | ||||||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Program: | R KNQ - Communication, Navigation, Quantum Technology | ||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Ionosphere | ||||||||||||||||||||||||||||||||
Location: | Neustrelitz | ||||||||||||||||||||||||||||||||
Institutes and Institutions: | Institute for Solar-Terrestrial Physics > Space Weather Observation | ||||||||||||||||||||||||||||||||
Deposited By: | Moreno Bulla, Mario Andres | ||||||||||||||||||||||||||||||||
Deposited On: | 14 Oct 2022 12:15 | ||||||||||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:50 |
Repository Staff Only: item control page