Shi, Lifeng and Leichtle, Tobias and Wurm, Michael and Taubenböck, Hannes (2022) Estimating housing vacancy rates at the residential neighborhood level: The case of Zhengzhou, China. 2022 Joint Urban Remote Sensing Event (JURSE), 2022-02-02 - 2022-02-04, Medellín, Colombia.
PDF
1MB |
Abstract
Estimating housing vacancy rates (HVR) at the residential neighborhood or even at higher spatial levels is rarely carried out due to the challenges on availability and collection of appropriate data of high spatial resolution. In this study, we introduce a framework for estimating HVR at residential neighborhood level based on selected emerging data sources: night-time light data, very high-resolution image, Open Street Map, housing data and census data. Our developed framework consists of three steps: 1) we extract residential neighborhoods as well as detailed housing information using EO-data; 2) we spatially distribute the census population into residential neighborhoods proportional to night light emissions; 3) we estimate HVR of each residential neighborhood according to the gap between its actual population and the estimated population capacity. Based on this methodology, we find the following main results for our test case of Zhengzhou, China: 1) the average HVR is estimated at 31%; 2) with rising distance to the city center the HVR is increasing.
Item URL in elib: | https://elib.dlr.de/188666/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Estimating housing vacancy rates at the residential neighborhood level: The case of Zhengzhou, China | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | February 2022 | ||||||||||||||||||||
Refereed publication: | No | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Housing vacancy rate, Residential neighborhood, Remote sensing, Emerging data | ||||||||||||||||||||
Event Title: | 2022 Joint Urban Remote Sensing Event (JURSE) | ||||||||||||||||||||
Event Location: | Medellín, Colombia | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 2 February 2022 | ||||||||||||||||||||
Event End Date: | 4 February 2022 | ||||||||||||||||||||
Organizer: | EAFIT | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||||||
Deposited By: | Leichtle, Tobias | ||||||||||||||||||||
Deposited On: | 10 Nov 2022 11:45 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:49 |
Repository Staff Only: item control page