Wilken, Jascha and Sippel, Martin and Berger, Michael (2022) Critical Analysis of SpaceX's Next Generation Space Transportation System: Starship and Super Heavy. 2nd International Conference on High-Speed Vehicle Science Technology (HiSST), 11.-15. Sep. 2022, Brügge, Belgien.
![]() |
PDF
742kB |
Abstract
For the first time in the history of spaceflight a fully reusable launch system appears possible within the near future. Since its presentation in 2016 SpaceXs next generation space transport system has gone through multiple names and design iterations but some key design features remained constant: Full reusability, Full-Flow Staged Combustion engines and deeply subcooled LOX/LCH4 as propellants. The current design iteration is of special interest because hardware is being integrated and the first test flights, including landings, of the upper stage have been completed. A key feature of this iteration is the novel approach to use a 'skydiving' maneuver to dissipate as much energy as possible through aerodynamic forces before initiating a landing burn and landing vertically. The implications of a fully reusable system of this size on the orbital launch market are significant even if the ambitious plans for quick turnaround of stages are not fulfilled right from the beginning. Within this paper, the two-staged system is analyzed from a technical perspective based on publicly available information. The principal goal is to form an understanding of the high-level system properties. Of special interest are the return methods, which exhibit some novel properties. Overall a reasonable agreement between the generated models and the publicly available information is found. The design and its driving factors are discussed and a fundamental understanding of the high-level properties of the system is attained.
Item URL in elib: | https://elib.dlr.de/188531/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | Critical Analysis of SpaceX's Next Generation Space Transportation System: Starship and Super Heavy | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | September 2022 | ||||||||||||||||
Refereed publication: | No | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | No | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | SpaceX, FFSC, Starship, trajectory, RLV | ||||||||||||||||
Event Title: | 2nd International Conference on High-Speed Vehicle Science Technology (HiSST) | ||||||||||||||||
Event Location: | Brügge, Belgien | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Dates: | 11.-15. Sep. 2022 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Space Transportation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R RP - Space Transportation | ||||||||||||||||
DLR - Research theme (Project): | R - Systems Analysis Space Transport (SART) | ||||||||||||||||
Location: | Bremen | ||||||||||||||||
Institutes and Institutions: | Institute of Space Systems > Space Launcher Systems Analysis | ||||||||||||||||
Deposited By: | Callsen, Steffen | ||||||||||||||||
Deposited On: | 28 Sep 2022 12:50 | ||||||||||||||||
Last Modified: | 28 Sep 2022 12:50 |
Repository Staff Only: item control page