Wang, Wandi and Motagh, Mahdi and Plank, Simon Manuel and Orynbaikyzy, Aiym and Roessner, Sigrid (2022) Application of SAR time-series and deep learning for estimating landslide occurence time. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII (B3), pp. 1-7. doi: 10.5194/isprs-archives-XLIII-B3-2022-1181-2022. ISSN 1682-1750.
PDF
- Published version
1MB |
Official URL: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2022/1181/2022/
Abstract
The time series of normalized difference vegetation index (NDVI) and interferometric coherence extracted from optical and Synthetic Aperture Radar (SAR) images, respectively, have strong responses to sudden landslide failures in vegetated regions, which is expressed by a sudden increase or decrease in the values of NDVI and coherence. Compared with optical sensors, SAR sensors are not affected by cloud and daylight conditions and can detect the occurrence time of failure in near real-time. The purpose of this paper is to automatically determine the time of failure occurrence using time series coherence values. We propose, based on some existing anomaly detection algorithms, a deep neural network-based anomaly detection strategy that combines supervised and unsupervised learning without a priori knowledge about failure time. Our experiment using July 21, 2020 Shaziba landslide in China shows that in comparison to widely used unsupervised methodology, the use of our algorithm leads to a more accurate detection of the timing of the landslide failure.
Item URL in elib: | https://elib.dlr.de/188280/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Application of SAR time-series and deep learning for estimating landslide occurence time | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 11 June 2022 | ||||||||||||||||||||||||
Journal or Publication Title: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
Volume: | XLIII | ||||||||||||||||||||||||
DOI: | 10.5194/isprs-archives-XLIII-B3-2022-1181-2022 | ||||||||||||||||||||||||
Page Range: | pp. 1-7 | ||||||||||||||||||||||||
ISSN: | 1682-1750 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Landslide, Deep Learning, SAR, Anomaly Detection, Unsupervised Learning | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||||||||||
Deposited By: | Plank, Simon Manuel | ||||||||||||||||||||||||
Deposited On: | 22 Sep 2022 09:47 | ||||||||||||||||||||||||
Last Modified: | 18 Aug 2023 12:17 |
Repository Staff Only: item control page