Wang, Wandi und Motagh, Mahdi und Plank, Simon Manuel und Orynbaikyzy, Aiym und Roessner, Sigrid (2022) Application of SAR time-series and deep learning for estimating landslide occurence time. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII (B3), Seiten 1-7. doi: 10.5194/isprs-archives-XLIII-B3-2022-1181-2022. ISSN 1682-1750.
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2022/1181/2022/
Kurzfassung
The time series of normalized difference vegetation index (NDVI) and interferometric coherence extracted from optical and Synthetic Aperture Radar (SAR) images, respectively, have strong responses to sudden landslide failures in vegetated regions, which is expressed by a sudden increase or decrease in the values of NDVI and coherence. Compared with optical sensors, SAR sensors are not affected by cloud and daylight conditions and can detect the occurrence time of failure in near real-time. The purpose of this paper is to automatically determine the time of failure occurrence using time series coherence values. We propose, based on some existing anomaly detection algorithms, a deep neural network-based anomaly detection strategy that combines supervised and unsupervised learning without a priori knowledge about failure time. Our experiment using July 21, 2020 Shaziba landslide in China shows that in comparison to widely used unsupervised methodology, the use of our algorithm leads to a more accurate detection of the timing of the landslide failure.
elib-URL des Eintrags: | https://elib.dlr.de/188280/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Application of SAR time-series and deep learning for estimating landslide occurence time | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 11 Juni 2022 | ||||||||||||||||||||||||
Erschienen in: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Band: | XLIII | ||||||||||||||||||||||||
DOI: | 10.5194/isprs-archives-XLIII-B3-2022-1181-2022 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1-7 | ||||||||||||||||||||||||
ISSN: | 1682-1750 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Landslide, Deep Learning, SAR, Anomaly Detection, Unsupervised Learning | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit | ||||||||||||||||||||||||
Hinterlegt von: | Plank, Simon Manuel | ||||||||||||||||||||||||
Hinterlegt am: | 22 Sep 2022 09:47 | ||||||||||||||||||||||||
Letzte Änderung: | 18 Aug 2023 12:17 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags