elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

How can space-borne along-track neutral density measurements be used to predict multi-level global thermospheric neutral density fields?

Forootan, Ehsan and Kosary, Mona and Farzaneh, Saeed and Borries, Claudia and Kodikara, Timothy and Doornbos, Eelco and Siemes, Christian (2022) How can space-borne along-track neutral density measurements be used to predict multi-level global thermospheric neutral density fields? 2nd Symposium of IAG Commission 4 “Positioning and Applications”, 5-8 Sep 2022, Potsdam, Germany. doi: 10.5194/iag-comm4-2022-44.

Full text not available from this repository.

Official URL: https://meetingorganizer.copernicus.org/iag-comm4-2022/iag-comm4-2022-44.html

Abstract

An accurate estimation of the Thermospheric Neutral Density (TND) is important for predicting the orbit of satellites and objects, for example, those with the altitude of less than 1000 km. Models are often used to simulate TNDs but their accuracy is limited due to modelling restrictions and sensitivity to the calibration period. Satellite missions such as CHAMP, GRACE, GOCE, Swarm, and GRACE-FO are equipped with on-board accelerometer sensors to measure drag forces, which can be used to estimate along-track TNDs. However, spatial and temporal coverage of these space borne TNDs is restricted to the mission design. To make the best use of the modelling tools and measurements, we applied these along-track TND measurements within the sequential Calibration and Data Assimilation (C/DA) framework proposed by (Forootan et al., 2022, doi:10.1038/s41598-022-05952-y). The C/DA is used to re-calibrate the NRLMSISE00 model, which is called “C/DA-NRLMSISE00”, whose outputs fit well to the introduced space-borne TNDs. The C/DA-NRLMSISE00 is applicable for forecasting TNDs and individual neutral mass compositions at any predefined vertical level (between ~100 and ~600 km) with user-defined spatial-temporal sampling. Nine time periods (October 2003, July 2004, March 2008, April 2010, March 2015, September 2017, August 2018, September 2020 and October 2021) associated with space weather storms are selected for our investigations because most of the available models lack accuracy to provide reasonable TND simulations. Independent comparisons are performed with the space-borne TNDs that were not used within the C/DA framework, as well as with the outputs of other thermospheric models such as Jacchia-Bowman 2008 (JB2008) and the High Accuracy Satellite Drag Model (HASDM) database. The numerical results indicate improvements in the Root Mean Squared Errors (RMSE) of the C/DA-NRLMSISE00's TND forecasts compared to NRLMSISE-00, JB2008 and HASDM along-track of the LEO missions. The percentage reductions are found to be: 51%, 8% and 8 % along GRACE (2003, average altitude 490 km), 25%, 20% and 48% along GOCE (2010, average altitude 270 km), 46%, 37% and 35% along Swarm B (2015, average altitude 520 km), 54%, 12% and 5 % along Swarm B (2017, average altitude 514 km), and 41% and 64% along GRACE (FO) (2021, average altitude 504 km), respectively.

Item URL in elib:https://elib.dlr.de/188252/
Document Type:Conference or Workshop Item (Speech)
Title:How can space-borne along-track neutral density measurements be used to predict multi-level global thermospheric neutral density fields?
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Forootan, EhsanUniversity of Aalborg, Department of Planning, Rendsburggade 14, 9000 Aalborg, Denmarkhttps://orcid.org/0000-0003-3055-041XUNSPECIFIED
Kosary, MonaSchool of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran 113654563, IranUNSPECIFIEDUNSPECIFIED
Farzaneh, SaeedSchool of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran 113654563, Iranhttps://orcid.org/0000-0002-0534-0632UNSPECIFIED
Borries, ClaudiaUNSPECIFIEDhttps://orcid.org/0000-0001-9948-3353UNSPECIFIED
Kodikara, TimothyUNSPECIFIEDhttps://orcid.org/0000-0003-4099-9966UNSPECIFIED
Doornbos, EelcoKNMIhttps://orcid.org/0000-0002-9790-8546UNSPECIFIED
Siemes, ChristianTU Delfthttps://orcid.org/0000-0001-8316-1130UNSPECIFIED
Date:5 September 2022
Refereed publication:No
Open Access:No
Gold Open Access:No
In SCOPUS:No
In ISI Web of Science:No
DOI:10.5194/iag-comm4-2022-44
Status:Published
Keywords:thermosphere, ionosphere, Swarm, GRACE, TIE-GCM, calibration and data assimilation, NRLMSISE-00, neutral mass density
Event Title:2nd Symposium of IAG Commission 4 “Positioning and Applications”
Event Location:Potsdam, Germany
Event Type:international Conference
Event Dates:5-8 Sep 2022
Organizer:International Association of Geodesy (https://www.iag-aig.org/)
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Earth Observation
DLR - Research theme (Project):R - Solar-Terrestrial Physics SO
Location: Neustrelitz
Institutes and Institutions:Institute for Solar-Terrestrial Physics
Deposited By: Kodikara, Dr Timothy
Deposited On:05 Oct 2022 14:08
Last Modified:05 Oct 2022 14:08

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.