Maertz, Alexandra and Langenmayr, Uwe and Ried, Sabrina and Seddig, Katrin and Jochem, Patrick (2022) Charging Behavior of Electric Vehicles: Temporal Clustering Based on Real‐World Data. Energies, 15, p. 6575. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/en15186575. ISSN 1996-1073.
![]() |
PDF
- Published version
3MB |
Official URL: https://www.mdpi.com/1996-1073/15/18/6575
Abstract
The increasing adoption of battery electric vehicles (BEVs) is leading to rising demand for electricity and, thus, leading to new challenges for the energy system and, particularly, the electricity grid. However, there is a broad consensus that the critical factor is not the additional energy demand, but the possible load peaks occurring from many simultaneous charging processes. Hence, sound knowledge about the charging behavior of BEVs and the resulting load profiles is required for a successful and smart integration of BEVs into the energy system. This requires a large amount of empirical data on charging processes and plug‐in times, which is still lacking in literature. This paper is based on a comprehensive data set of 2.6 million empirical charging processes and investigates the possibility of identifying different groups of charging processes. For this, a Gaussian mixture model, as well as a k‐means clustering approach, are applied and the results validated against synthetic load profiles and the original data. The identified load profiles, the flexibility potential and the charging locations of the clusters are of high relevance for energy system modelers, grid operators, utilities and many more. We identified, in this early market phase of BEVs, a surprisingly high number of opportunity chargers during daytime, as well as switching of users between charging clusters.
Item URL in elib: | https://elib.dlr.de/188209/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Charging Behavior of Electric Vehicles: Temporal Clustering Based on Real‐World Data | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 8 September 2022 | ||||||||||||||||||||||||
Journal or Publication Title: | Energies | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 15 | ||||||||||||||||||||||||
DOI: | 10.3390/en15186575 | ||||||||||||||||||||||||
Page Range: | p. 6575 | ||||||||||||||||||||||||
Publisher: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||||||
ISSN: | 1996-1073 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | battery electric vehicles (BEV); temporal charging behavior of BEV users; flexibility potential in charging processes of BEVs; k‐means clustering; Gaussian mixture model clustering | ||||||||||||||||||||||||
HGF - Research field: | Energy | ||||||||||||||||||||||||
HGF - Program: | Energy System Design | ||||||||||||||||||||||||
HGF - Program Themes: | Energy System Transformation | ||||||||||||||||||||||||
DLR - Research area: | Energy | ||||||||||||||||||||||||
DLR - Program: | E SY - Energy System Technology and Analysis | ||||||||||||||||||||||||
DLR - Research theme (Project): | E - Systems Analysis and Technology Assessment | ||||||||||||||||||||||||
Location: | Stuttgart | ||||||||||||||||||||||||
Institutes and Institutions: | Institute of Networked Energy Systems > Energy Systems Analysis, ST | ||||||||||||||||||||||||
Deposited By: | Jochem, Patrick | ||||||||||||||||||||||||
Deposited On: | 14 Sep 2022 12:00 | ||||||||||||||||||||||||
Last Modified: | 19 Sep 2022 09:27 |
Repository Staff Only: item control page