Dariol, Quentin und Le Nours, Sebastien und Pillement, Sebastien und Stemmer, Ralf und Helms, Domenik und Grüttner, Kim (2022) A Hybrid Performance Prediction Approach for Fully-Connected Artificial Neural Networks on Multi-core Platforms. In: 22nd International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS 2021, 13511, Seiten 250-263. Springer. Embedded Computer Systems: Architectures, Modeling, and Simulation - SAMOS 2022, 2022-07-03 - 2022-07-07, Samos, Greece. doi: 10.1007/978-3-031-15074-6_16. ISBN 978-303115073-9. ISSN 0302-9743.
PDF
541kB |
Offizielle URL: https://dx.doi.org/10.1007/978-3-031-15074-6_16
Kurzfassung
Predicting the performance of Artificial Neural Networks (ANNs) on embedded multi-core platforms is tedious. Concurrent accesses to shared resources are hard to model due to congestion effects on the shared communication medium, which affect the performance of the application. Most approaches focus therefore on evaluation through systematic implementation and testing or through the building of analytical models, which tend to lack of accuracy when targeting a wide range of architectures of varying complexity. In this paper we present a hybrid modeling environment to enable fast yet accurate timing prediction for fully-connected ANNs deployed on multi-core platforms. The modeling flow is based on the integration of an analytical computation time model with a communication time model which are both calibrated through measurement inside a system level simulation using SystemC. The ANN is described using the Synchronous DataFlow (SDF) Model of Computation (MoC), which offers a strict separation of communications and computations and thus enables the building of separated computation and communication time models. The proposed flow enables the prediction of the end-to-end latency for different mappings of several fully-connected ANNs with an average of 99,5% accuracy between the created models and real implementation.
elib-URL des Eintrags: | https://elib.dlr.de/188200/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vorlesung) | ||||||||||||||||||||||||||||
Titel: | A Hybrid Performance Prediction Approach for Fully-Connected Artificial Neural Networks on Multi-core Platforms | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 14 August 2022 | ||||||||||||||||||||||||||||
Erschienen in: | 22nd International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS 2021 | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
Band: | 13511 | ||||||||||||||||||||||||||||
DOI: | 10.1007/978-3-031-15074-6_16 | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 250-263 | ||||||||||||||||||||||||||||
Verlag: | Springer | ||||||||||||||||||||||||||||
Name der Reihe: | LNCS: Lecture Notes in Computer Science | ||||||||||||||||||||||||||||
ISSN: | 0302-9743 | ||||||||||||||||||||||||||||
ISBN: | 978-303115073-9 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Performance prediction, Multi-processor systems, SystemC simulation models, Artificial neural networks | ||||||||||||||||||||||||||||
Veranstaltungstitel: | Embedded Computer Systems: Architectures, Modeling, and Simulation - SAMOS 2022 | ||||||||||||||||||||||||||||
Veranstaltungsort: | Samos, Greece | ||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 3 Juli 2022 | ||||||||||||||||||||||||||||
Veranstaltungsende: | 7 Juli 2022 | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | V - keine Zuordnung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - keine Zuordnung | ||||||||||||||||||||||||||||
Standort: | Oldenburg | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Systems Engineering für zukünftige Mobilität > System Evolution and Operation | ||||||||||||||||||||||||||||
Hinterlegt von: | Dariol, Quentin | ||||||||||||||||||||||||||||
Hinterlegt am: | 26 Sep 2022 08:59 | ||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:49 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags