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Abstract. Predicting the performance of Artificial Neural Networks
(ANNs) on embedded multi-core platforms is tedious. Concurrent ac-
cesses to shared resources are hard to model due to congestion effects on
the shared communication medium, which affect the performance of the
application. Most approaches focus therefore on evaluation through sys-
tematic implementation and testing or through the building of analytical
models, which tend to lack of accuracy when targeting a wide range of
architectures of varying complexity. In this paper we present a hybrid
modeling environment to enable fast yet accurate timing prediction for
fully-connected ANNs deployed on multi-core platforms. The modeling
flow is based on the integration of an analytical computation time model
with a communication time model which are both calibrated through
measurement inside a system level simulation using SystemC. The ANN
is described using the Synchronous DataFlow (SDF) Model of Computa-
tion (MoC), which offers a strict separation of communications and com-
putations and thus enables the building of separated computation and
communication time models. The proposed flow enables the prediction of
the end-to-end latency for different mappings of several fully-connected
ANNs with an average of 99.5% accuracy between the created models
and real implementation.

Keywords: Performance prediction · Multi-processor systems · SystemC
simulation models · Artificial neural networks

1 Introduction

The Internet-of-Things (IoT) market is continuing to grow, as the number of
connected devices is expected to reach 27 billion by 2025 (an increase of more
than 200% compared to 2020) [5]. Along with this increase, the need for smart
embedded devices is emerging and efficient execution of AI algorithms such as

This work has been funded by the WISE consortium, France (pSSim4AI project) and
by the Federal Ministry of Education and Research (BMBF, Germany) in the project
Scale4Edge (16ME0465).



2 Q. Dariol et al.

Artificial Neural Networks (ANNs) has become thus a key challenge. To avoid
the loss in throughput and energy caused by data transmissions when executing
AI algorithms on distant servers, the focus is nowadays on their deployment on
edge devices. Among edge devices, multi-core platforms are widely used due to
the versatility they offer. However, ANNs are computation-intensive applications
that require important amount of resources while embedded platforms are limited
in memory and computing capacity and bear strict energy constraints. In this
context, an intensive evaluation of ANN implementations on multi-core platforms
is needed early in the design process to optimize solutions that meet performance
constraints.

Several approaches have already been proposed to allow fast evaluation of
ANN deployment on embedded platforms. Some approaches focus on the imple-
mentation and performance measurement on real target. The disadvantage of this
process is that it represents a time consuming and error prone process as the ANN
must be trained and then deployed on the real platform to evaluate the achieved
performance. Because of long development cycle, the coverage of the design space
is limited while using this evaluation technique. Other approaches focus on build-
ing analytical models to predict the achieved performance and possible influence
of captured design parameters. These models tend however to be inaccurate when
targeting architectures with complex effects due to shared resources usage. In the
context of our work, execution of highly parallel applications such as ANNs on
multi-core platforms may cause concurrent accesses from processing elements to
shared memories which lead to performance loss. Modeling and predicting the
impact of communications on the execution time of the application is a key el-
ement to enable accurate performance prediction for a large scale of multi-core
architectures.

In this paper we propose a hybrid performance prediction workflow for fully-
connected ANN deployment on multi-core platforms. This modeling approach
enables the estimation of the end-to-end latency of the application while predict-
ing the importance and impact of communications. The proposed models can be
used at several levels of granularity to describe the ANN in combination with
different mappings on the target platform. This offers the ability to compare
configurations and thus explore the design space to find solutions that optimize
timing. In our experiments, we observed that the prediction accuracy of the cre-
ated models when compared with measurements performed on a real platform
is more than 99.5% on average for 21 different scenarios. The proposed flow is
tested with three different fully-connected ANNs, for which several partition-
ings and mappings are considered on architectures containing up to 7 cores. The
platform used to measure real execution times is implemented on two different
FPGAs.

The paper is organized as follows: Section 2 presents related work and how
the work presented in this paper extends our previous workflow for performance
prediction of ANNs. Section 3 presents the features of the proposed workflow.
Section 4 presents the experimental setup and results. Section 5 summarizes
what is presented in the paper and presents our future work directions.
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2 Related work

Several approaches have been carried out to tackle the challenge of performance
prediction for ANNs on embedded platforms. The approach in [3] focuses on per-
forming Neural Architecture Search on embedded GPU platforms under accuracy,
timing and energy constraints. Another notable approach is [18], which proposes
a latency and energy evaluation flow to find optimized mappings of neural net-
works on edge devices. These approaches focus on the evaluation of the neural
network through implementation and testing on real prototype. Such evaluation
approaches require to systematically train and execute considered ANNs on the
platform. To alleviate the development effort, models of performance are needed.

[6] [1] [4] focus on proposing performance models for the exploration of param-
eters of ANN topology such as the number of layers and the number of neurons.
Their models allow predicting the impact of reduction techniques on ANN’s la-
tency. These approaches aim however at optimizing the inference of ANNs on
single processor systems and do not enable prediction of timing for parallel ex-
ecution of ANNs. Other approaches propose analytical modeling techniques to
explore and optimize performance for highly parallel architectures [2] [8] [13]
[16]. In these approaches, the emphasis is put on the exploration of architectural
alternatives used to implement an hardware accelerator for ANN inference. Be-
cause these architectures are equipped with dedicated high-speed communication
channels between functions, the part of communications is irrelevant in overall
inference time, and is not considered in the proposed models of performance.
Multi-core platform’s architectures are conceived to bear a high versatility in the
regard that they can execute several different types of applications. They rely for
this reason on more general purpose communication bus which bear a higher part
in the application’s latency and energy, and must be modeled. In our work we
aim at enabling performance prediction for multi-core processing platforms by
proposing an innovative modeling approach that combines simulation, analytical
models and partial characterization through measurement.

The workflow presented in this paper is based on previous work presented
in [17]. The previous workflow was based on a probabilistic simulation model
and demonstrated to deliver fast yet accurate analysis on video processing appli-
cations. This paper presents the following contributions: (1) an hybrid analyti-
cal computation time model for fully-connected ANNs on processing cores. This
model only need to be calibrated once and can then predict accurately the exe-
cution time of any partitioning of fully-connected ANNs, (2) the integration of
this analytical computation time model in a simulation model with a communi-
cation time model to predict the execution of the application executed on several
processing cores, (3) the validation of the modeling approach by comparing the
predicted execution time with real duration measured on an execution platform.

3 Proposed modeling approach

A schematic of the proposed workflow is given in Fig. 1. This figure highlights
the steps to build performance models used to predict execution time of fully-
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Fig. 1: Schematic of the modeling flow. This flow aims at enabling performance
prediction for fully-connected ANNs on multi-core platforms. The processes
marked with the * symbol are novel features to our flow.

connected ANNs deployed on multi-core platforms. The first activity in the pro-
posed flow is captured in orange on the figure. It focuses on the capture of the
ANN in a model of computation and its mapping on the target platform (dis-
cussed in Sections 3.1, 3.2 and 3.3). The next activity (highlighted in purple)
focuses on the simulation and prediction of performance using the developed
SystemC models (Sections 3.4 and 3.5). The third activity (highlighted in green)
focuses on the measurement of execution time in order to characterize the timing
models proposed in this flow (Section 4.1). The fourth activity (highlighted in
yellow) and final activity (highlighted in grey) focus respectively on the validation
of the proposed models by comparing the predictions to the measured execution
times and the exploration of several grains and mappings to optimize latency
using the proposed models (Sections 4.2 and 4.3).

3.1 Target application: fully-connected ANNs

ANNs are applications often used to address data classification problems. Among
neural networks, several algorithms are available. The most classical neural net-
work algorithm is the fully-connected network, also called Multi-Layer Perceptron
(MLP) [15]. The MLP consists of a set of neurons organized in layers (input layer,
hidden layers and output layer). In such a fully-connected network each neuron
is connected to every neurons of the previous layer. The operations required to
compute the output of a neuron are presented in Equation (1) from [14]. In this
equation, φ is the activation function of the neuron. n is the number of inputs
of the neuron and thus the number of neurons from the previous layer due to
the MLP definition. The xi and wi are respectively the inputs and the weights
of the neuron. B is the bias of the neuron. Because neurons of a same fully-
connected layer are independent from one another, it is possible to parallelize
their execution.
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output = φ

(
n∑

i=1

wixi +B

)
(1)

Our approach focuses solely on the optimization of the execution of the ANN
on a embedded platform. The training of the ANN is not considered in the scope
of this work.

3.2 Modeling ANNs with SDF

To ease the analysis and exploration of studied ANN implementations on the tar-
get platform, Synchronous Data Flow (SDF) Model of Computation (MoC) [10]
is used. SDF is used to describe the data flow between actors via communication
channels. It offers a strict separation of computation and communication (read,
write) phases of actors. Computation and communication separation eases the
performance prediction process by allowing building separated computation time
model and communication time model. To apply the SDF MoC to fully-connected
ANNs, we define as actors a set of neurons, called clusters. In this work we call
cluster a given set of neurons from the same layer, which execution is modeled as
an actor. The number of actors (i.e. the number of clusters) by layer is established
based on the desired granularity. ClusterN denotes an organization where each
layer is partitioned into N clusters of neurons. The communications channels of
the SDF graph correspond to the set of data exchanged between clusters. The
source (IN channel) of the SDF graph is the input data that needs to be classified
by the ANN. The sink (OUT channel) of the SDF graph is the output result of
the ANN. An example of how an ANN is described in a SDF graph is given in
Fig. 2. In this case the actors of the SDF graph are the layers of the ANN and
the channels between actors are the outputs of the layers.

Exploring the partitioning of ANNs using various grains is necessary. In this
work, the level of granularity of a SDF graph is defined by the number of clusters.
Coarser grains inhibit the acceleration that can be exploited from the parallelism
of ANNs, whereas finer grains invoke numerous communication channels, which
overload the communication bus of the considered platform. [11] presented a way
of capturing ANN in SDF using several levels of granularity. In the example
presented in Fig. 2 the ANN is described using the Cluster1 grain, which is
the more coarse level of granularity considered. Using this level of granularity,
the actors considered in the SDF graph are the layers of the ANN. The finest
granularity considered is the neuron grain, where the actors considered in the
SDF graph are the neurons of the ANN. Intermediate grains are considered,
which separates each layer into sets of actors. The number of actors (i.e. the
number of clusters) by layer is established based on the desired granularity. The
partitioning of layers into clusters is done in such a way that each actor contains
nearly the same number of neurons. This allows for an equitable distribution of
workload between actors. In Fig. 1, Cluster1 and Cluster3 graphs obtained from
the same ANN are presented. Each layer of the ANN forms 1 actor in the Cluster1
graph and 3 actors in the Cluster3. The Cluster1 graph includes 3 actors and 4
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communications channels, whereas the Cluster3 graph includes 9 actors and 24
communication channels.

3.3 Mapping on the targeted architecture

The considered model of architecture is composed of a set of tiles where a tile is
one single-core processor with private data and instruction memories. Executing
instructions from this private memory causes no interference with other tiles.
Data exchanges between different tiles are performed via a shared memory. The
accesses to the shared memory are done using a communication bus. A schematic
of the considered platform is given in Fig. 2. In this work, tiles are assumed to be
identical except for private memory sizes. The target platform is thereby assumed
to be homogeneous.

In the mapping step, the actors of the identified SDF graph are mapped on
the tiles available on the platform. The communication channels between actors
are mapped on the shared memory. The tiles will read (ReadTokens() statement)
and write (WriteTokens() statement) the data necessary for the execution of
the actors using the communication channels. During the execution of actors,
the processing elements cannot be interrupted. The application is self-scheduled:
the scheduling is established based on the dependency between actors. For a
given SDF graph, several mappings of the application are possible. An exam-
ple of mapping for a given ANN captured in SDF is shown in Fig. 2. In this
example, the HiddenLayer1 of the SDF graph is mapped on one tile while the
HiddenLayer2 and OutputLayer actors are mapped on a second tile. Comparing
levels of granularity and mappings of the application allows finding solutions that
jointly optimize timing properties and number of tiles.

3.4 Computation time model

We propose an analytical computation time model to predict the execution time
of clusters of neurons from the same layers of the ANN. The analytical model is
established based on the computations performed in order to set the output of
a fully connected layer of an ANN (Equation (1)). According to this equation,
the execution time of a neuron from a fully-connected layer depends linearly on
the number of inputs it has. From this information we can deduce the theoretical
delay Dneuron required to compute the output of an artificial neuron. This delay is
given in Equation (2). In this equation n is the number of inputs of the neuron,
DΣ is the delay needed to compute the multiplication wixi and perform the
associated sum, and Dφ corresponds to the delay needed to add the bias and
compute the activation function of the neuron.

Dneuron(n) = nDΣ +Dφ (2)

Because neurons from a same layer are independent, the execution time of
a cluster of neurons depends linearly on the number of neurons it contains. As
presented in the code of actor HiddenLayer2 in Fig. 2, the operations to compute
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Fig. 2: Illustration of a coarse grain SDF graph (Cluster1 as introduced in Sec-
tion 3.2) mapped on the platform (introduced in Section 3.3). The content of the
HiddenLayer2 actor and the computations performed inside it are detailed. The
delays needed to perform the operations inside the actor are predicted using the
highlighted analytical formula which is presented in details in Section 3.4.

neurons are repeated m times, where m is the number of neurons contained in the
considered actor. The delay to compute these operations is therefore m.Dneuron.
In addition to this delay, the initialization of the variables and the call and return
procedures of functions provoke a delay named Dsetup. Equation (3) presents the
formula of the delay needed to compute a cluster of neurons.

Dcluster(n,m) = mDneuron(n) +Dsetup = nmDΣ +mDφ +Dsetup (3)

The DΣ , Dφ and Dsetup unitary delays can be characterized based on mea-
sured execution time of neurons. These delays only need to be characterized once
for any given processing element, as the sum and multiplication operations and
the activation functions considered in this work present insignificant execution
time variability on the target platform. Once the unitary delays characterized, the
proposed computation time model can therefore predict accurately performance
for any considered level of granularity used to describe ANN applications.

3.5 Simulation using SystemC models

Our performance models were created with the SystemC language with the same
organization as in [17]. In order to predict the performance of a given mapped
SDF graph (SDFG) on the considered platform, both the computation time model
presented in Section 3.4 and the message level communication time model pre-
sented in [19] are used. These two models are integrated in a behavioral descrip-
tion of each tile which describes the sequence of the mapped computation and
communication statements. When an actor is being executed in simulation, the
analytical computation time model is called to compute the corresponding de-
lay. During communications through channels, the communication time model
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is called to compute the delays of communications on the platform even in the
case of contentions at shared resources. The proposed model of performance is
by construction composable: the number of tiles do not modify the nature of the
model. It is therefore scalable regarding the mappings and the level of granularity
used to describe the ANN. Different mappings are simulated and the obtained
results are compared with measurements.

4 Experiments

4.1 Testing configuration

To characterize our models of performance and to validate their prediction we
implemented a hardware platform that followed the hypothesis of the proposed
model of architecture, as presented in Section 3.3. The platform is implemented
on both Xilinx Zynq-7000 and UltraScale MPSoC+ FPGA boards to test the
portability of the modeling flow to several FPGAs. The observed variation in
execution time was lesser than 0.05% when comparing the durations measured
on both platforms.

Each MicroBlaze is equipped with a Floating Point Unit (FPU) and a hard-
ware multiplier. The platform is composed of 7 tiles connected via an AXI shared
interconnect. The tiles communicate through a shared memory via the shared in-
terconnect. This platform integrates a timing measurement infrastructure, used
to measure the computation time and communication time for SDF graphs ex-
ecuted on the platform. The measurement infrastructure was introduced in pre-
vious work. It is composed of two parts: the communication time measurement
part presented in [19], and the computation time measurement part. The compu-
tation time measurement part measures the computation time of the SDF actor
with code instrumentation. When an SDF graph iteration is started, the system
issues a start signal. When it ends, the system issues a stop signal. Based on the
elapsed time between the start and stop signals, the execution time of the SDF
graph is measured.

In order to calibrate the proposed analytical computation time model, the
base delays identified in Equation (3) have been measured on the experimental
platforms by varying the number of inputs of neurons and the number of neurons
in clusters. The results showed that for fully-connected ANNs executed on the
platform tile, the execution time varies linearly based on the number of inputs
of neurons, and based on the number of neurons executed inside the cluster. We
set DΣ = 47, Dφ = 146 (ReLU activation function), and Dsetup = 39 processor
cycles. In this work, the ANNs are implemented using the lightweight open source
library LibFANN [12] which enables the training and execution of MLPs in C
programming language. All the tested ANNs used the ReLU activation function
and the float32 precision. To verify and validate our modeling approach, we
considered three fully-connected ANNs with different topologies. Two ANNs were
developed and trained to perform digit recognition using the MNIST data set
introduced in [9]. The first algorithm is a 3 layers fully connected ANN with a
input layer of size 784 (28 × 28 grey scale pictures), a hidden layer containing
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10 neurons and a output layer containing 10 neurons. This ANN reached 85%
prediction accuracy. This algorithm is reffered as MNIST 784-10-10 in the rest of
the paper. The second algorithm is a 4 layers fully connected ANN with a input
layer of size 784, a first hidden layer containing 32 neurons, a second hidden
layer containing 16 neurons and an output layer containing 10 neurons. It is
referred as MNIST 784-32-16-10 in the rest of the paper. This ANN was trained
and reached 89% prediction accuracy. We also considered a third ANN trained
using the German Traffic Sign Recognition Benchmark (GTSRB) [7]. Different
filters are applied to the images from the GTSRB data-set to render the building,
training and deployment of the ANN on the considered platform possible. These
filters include a max pooling and a grayscale filters to reduce the size of the
input images to 576 pixels (24×24×1) and thus reduce the memory usage. This
ANN is composed of a input layer of size 576, two hidden layers both containing
30 neurons and a output layer of 43 outputs. It is referred as GTSRB 576-30-
30-43. Do to the simplification/optimization to allow the implementation of this
application, this ANN reached less than 20% prediction accuracy. In order to
test the accuracy of the proposed models for several grains, a set of SDF graphs
which express different levels of granularity were used. Several mappings were
also considered for each of these levels of granularity.

4.2 Experiment results

In Table 1 the predicted end-to-end latencies by the proposed simulable model are
compared with the end-to-end latencies measured on the real platform for several
scenarios. The considered scenarios allow stressing the performance models to test
and highlight three levels of scalability: (1) ANN topologies and level of gran-
ularity: several clusterings (from Cluster1 to Cluster7 ) for the considered ANN
topologies are tested to verify the accuracy of the proposed computation time
model for coarse and fine grains, (2) amount of communications: the communi-
cation time model is tested and stressed when running multiple tiles simulations,
as concurrent accesses to shared memories occur, (3) mapping and number of
processing elements: several mappings are tested for each considered grains, with
various number of processing elements. Mappings using up to 7 tiles and relying
both on parallel and pipeline execution are tested.

For each considered partitionings, a 1-tile scenario is tested, in which all ac-
tors are implemented on only 1 tile. For the Cluster2, Cluster3, Cluster4, Cluster6
and Cluster7 mapped respectively on 2, 3, 4, 6 and 7 tiles, the actors issued from
the partitioning of layers are mapped in order to enable a parallel execution of
the application. For the Cluster1 on 2/3 tiles scenario, each actor of the graph
is mapped on a separate tile, to enable a streaming execution of the application.
The other scenarios enable both a parallel and streaming execution of the appli-
cation. E.g. in the Cluster3 on 7 tiles scenario for the MNIST 784-10-10 topology,
each actor is mapped on a separate tile, to enable a parallel and streaming exe-
cution of the application. In the same scenario for the MNIST 784-32-16-10, the
HiddenLayer2 clusters actors and OutputLayer clusters actors were mapped to
a same tile due to the target platform only having 7 tiles available. The column
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Table 1: Comparison of the measured and predicted end-to-end latency for dif-
ferent partitionings and mappings of fully-connected ANNs.

Experiment End-to-end latency in thousands of processor cycles
ANN

topology Grain Nb. of actors /
comm. channels

Tiles
used Measured Comp. time

model only
Simulation

model Comm. %

MNIST
784
-10
-10

Cluster1 2 / 3 1 393 376 −4.35% 394 +0.22% 5%
2 387 370 −4.32% 387 +0.21% 52%

Cluster3 7 / 16
1 430 376 −12.4% 431 +0.31% 13%
3 170 151 −11.6% 170 −0.01% 26%
7 191 148 −22.5% 187 −2.28% 89%

Cluster7 15 / 64 1 502 377 −25.0% 506 +0.63% 26%
7 120 75 −37.4% 121 +0.75% 64%

MNIST
784
-32
-16
-10

Cluster1 3 / 4 1 1238 1219 −1.51% 1239 +0.07% 2%
3 1201 1184 −1.51% 1203 +0.18% 67%

Cluster3 9 / 25
1 1281 1220 −4.83% 1279 −0.15% 5%
3 443 421 −5.14% 442 −0.24% 8%
7 443 407 −8.03% 440 −0.57% 70%

Cluster7 21 / 113 1 1368 1220 −10.8% 1363 −0.33% 11%
7 241 192 −20.4% 241 +0.01% 28%

GTSRB
576
-30
-30
-43

Cluster2 6 / 13
1 967 930 −3.79% 964 +0.32% 3%
2 486 466 −4.04% 483 +0.49% 4%
7 433 408 −5.80% 437 −0.92% 57%

Cluster4 12 / 41 1 1002 931 −7.12% 996 +0.55% 7%
4 301 279 −7.12% 302 −0.42% 16%

Cluster6 18 / 85 1 1039 931 −10.4% 1030 +0.80% 10%
6 193 156 −18.8% 193 −0.39% 20%

Comm. % shows the average predicted amount of time spent in polling and ex-
ecuting memory accesses on the shared memory for every tile according to the
simulable model.

The predicted end-to-end latencies with associated prediction error are pre-
sented for the analytical computation time model used alone (Comp. time model
only column). The predictions of the computation time model only are too op-
timistic and bear 10.8% error on average for the presented scenarios. The pre-
diction error of the computation time model rises with the amount of commu-
nications in the considered scenario. When considering multiple tiles execution
and SDF graphs of fine grains with numerous communication channels such as
Cluster7, the computation time model error goes up to 37.4%. In order to predict
the execution time of ANNs on multi-core platforms, a computation time model
alone is not sufficient and the modeling of communications is necessary.

The simulable model bears an average accuracy of 99.5% for all the consid-
ered scenarios. The highest prediction error is reached for the MNIST 784-10-10,
with granularity level Cluster3 on 7 tiles scenarios: 2.89%. In this scenarios the
average time spent in communication per tile over the overall execution time of
the application is also the highest: 89%. For all the other scenarios, the error of
the simulable model is less than 1%.

The high accuracy of our hybrid modeling flow is rendered possible by the
following work hypothesis: (1) The strict separation of the computation and com-
munication using SDF and the model of architecture, which enables the building
of separated computation and communication time models. (2) The negligible
effect of data dependant paths on latency when executing MLPs on the tar-
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geted platform. We have validated this hypothesis by performing measurements
on the implementation platform while providing different input images to the
ANNs, and observed that the impact of data dependency on the execution time
is marginal. This is rendered possible by the type of ANN considered and by the
use of FPUs and hardware multipliers on tiles, which normalize the execution of
multiplication.

In our experiments, we only tested our modeling flow for ANNs using the
ReLU activation function and float32 precision. Extending the proposed mod-
eling flow to other precisions (e.g. float16 and fixed point precisions) and other
activation functions would simply require a re-calibration of the proposed mod-
els. The current time measurement infrastructure used to calibrate and validate
our models is built for architectures based on the AXI communication protocol.
The effort to port our modeling flow to architectures featuring this protocol is
thus minimal, while the effort to port it to other architectures is more significant.

4.3 Exploration of partitionings and mappings

The validated model of performance can be used to explore partitionings and
mappings of fully-connected ANNs on multi-core platforms. This exploration al-
lows evaluating deployments of ANNs on the considered platforms with no further
prototyping effort on real platform. The results of the exploration of several par-
titionings and mappings for the two ANNs trained on MNIST are presented in
Fig. 3. The displayed graphs give the predicted end-to-end latency of the ap-
plication based on the number of tiles used for several levels of granularity and
mappings. For each number of tiles the solution that optimize timing is high-
lighted in red on the graph, and the associated level of granularity (Cluster) as
well as the average communication rate per tile are displayed. The other scenarios
are depicted in blue.

The first graph (Fig. 3a) displays the exploration of end-to-end latency for
the MNIST 784-10-10 application. The end-to-end latency decreases when the
number of tiles used increases until 5 tiles, as the parallel execution of the actors of
the application allows to accelerate its execution time. The scenario that optimize
the end-to-end latency for this topology is the Cluster5 (C5) SDF graph executed
on 5 tiles with a latency of 109 thousands of processor cycles. For configurations
relying on more than 5 tiles, an increase of the overall end-to-end latency with
the number of tiles used is observed, due to the raise of the communication time.
For the 7 tiles execution, the scenario that optimize the timing is the Cluster5
SDF graph with a latency of 114 thousands of processor cycles. The Cluster7
execution on 7 tiles is 6% longer with a latency of 121 thousands of cycles. The
average time spent in communications per tile is 89% for the Cluster7 scenario
(as displayed in Table 1) and 39% for the Cluster5 scenario.

The second graph (Fig. 3b) displays the exploration of end-to-end latency for
the MNIST 784-32-16-10 application. In this case the overall end-to-end latency
decreases with the number of tiles used up to 7 tiles. The computations account
for a bigger part of the overall execution time. Therefore unlike the MNIST 784-
10-10, the time spent in communications do not produce a significant overhead
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Fig. 3: Evolution of the end-to-end latency in thousands of processor cycles based
on the number of tiles used for several partitionings and mappings of the consid-
ered applications.

when using a platform containing up to 7 tiles. The optimal scenario is the
Cluster7 (C7) executed on 7 tiles with a predicted latency of 241 thousands of
processor cycles and average communication rate per tile of 28%.

5 Conclusion

In this paper, we propose a hybrid performance prediction approach for fully-
connected ANNs on multi-core platforms. This approach is based on SystemC
simulation, which integrates an analytical computation time model and a com-
munication time model calibrated through measurement to predict execution
time. The proposed workflow achieves overall 99.5% accuracy for estimating the
end-to-end latency of three fully-connected ANNs, with the highest prediction
error on tested scenarios of 2.28%. This high accuracy is made possible by the
separation of computation and communication using the SDF MoC and by the
negligible effect of data dependant paths on the execution time. In future work
we will expand our modeling flow to other ANN types such as convolutional neu-
ral networks, and we will consider adding power prediction to our modeling flow
to enable the exploration of candidate solutions under both timing and power
constraints.

References

1. Banbury, C., Zhou, C., Fedorov, I., Matas, R., Thakker, U., Gope, D., Janapa Reddi,
V., Mattina, M., Whatmough, P.: Micronets: Neural network architectures for de-
ploying tinyml applications on commodity microcontrollers. In: Proceedings of Ma-
chine Learning and Systems (2021)



Hybrid Performance Prediction for ANNs on MPSoC 13

2. Chen, Y.H., Emer, J., Sze, V.: Using dataflow to optimize energy efficiency of deep
neural network accelerators. IEEE Micro (2017)

3. Galanis, I., Anagnostopoulos, I., Nguyen, C., Bares, G., Burkard, D.: Inference
and energy efficient design of deep neural networks for embedded devices. IEEE
Computer Society Annual Symposium on VLSI (ISVLSI) (2020)

4. Garbay, T., Dobiás, P., Dron, W., Lusich, P., Khalis, I., Pinna, A., Hachicha, K.,
Granado, B.: Cnn inference costs estimation on microcontrollers: the est primitive-
based model. 2021 28th IEEE International Conference on Electronics, Circuits,
and Systems (ICECS) (2021)

5. Hasan, M.: State of iot 2022: Number of connected iot devices grow-
ing 18% to 14.4 billion globally (May 2022), https://iot-analytics.com/
number-connected-iot-devices/, accessed: 07.06.2022

6. Heim, L., Biri, A., Qu, Z., Thiele, L.: Measuring what really matters: Optimizing
neural networks for tinyml (2021), https://arxiv.org/abs/2104.10645

7. Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., Igel, C.: Detection of traffic
signs in real-world images: The German Traffic Sign Detection Benchmark. In:
International Joint Conference on Neural Networks (2013)

8. Ke, L., He, X., Zhang, X.: Nnest: Early-stage design space exploration tool for neural
network inference accelerators. In: Proceedings of the International Symposium on
Low Power Electronics and Design (2018)

9. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE (1998)

10. Lee, E., Messerschmitt, D.: Synchronous data flow. Proceedings of the IEEE (1987)
11. Luenemann, D., Fakih, M., Gruettner, K.: Capturing neural-networks as syn-

chronous dataflow graphs. In: MBMV 2020 - Methods and Description Languages
for Modelling and Verification of Circuits and Systems; GMM/ITG/GI-Workshop
(2020)

12. Nissen, S.: Implementation of a fast artificial neural network library (fann) (2003),
https://github.com/libfann/fann

13. Parashar, A., Raina, P., Shao, Y.S., Chen, Y.H., Ying, V.A., Mukkara, A., Venkate-
san, R., Khailany, B., Keckler, S.W., Emer, J.: Timeloop: A systematic approach
to dnn accelerator evaluation. In: IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS) (2019)

14. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review (1958)

15. Rumelhart, D., Hinton, G., Williams, R.: Learning representations by back-
propagating errors. Nature 323 (1986)

16. Sombatsiri, S., Yu, J., Hashimoto, M., Takeuchi, Y.: A design space exploration
method of soc architecture for cnn-based ai platform. Workshop on Synthesis And
System Integration of Mixed Information technologies (SASIMI) (2019)

17. Stemmer, R., Vu, H.D., Le Nours, S., Grüttner, K., Pillement, S., Nebel, W.: A
measurement-based message-level timing prediction approach for data-dependent
sdfgs on tile-based heterogeneous mpsocs. Applied Sciences (2021)

18. Tsimpourlas, F., Papadopoulos, L., Bartsokas, A., Soudris, D.: A design space explo-
ration framework for convolutional neural networks implemented on edge devices.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(2018)

19. Vu, H.D., Nours, S.L., Pillement, S., Stemmer, R., Grüttner, K.: A fast yet accurate
message-level communication bus model for timing prediction of sdfgs on mpsoc.
In: 2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)
(2021)

https://iot-analytics.com/number-connected-iot-devices/
https://iot-analytics.com/number-connected-iot-devices/
https://arxiv.org/abs/2104.10645
https://github.com/libfann/fann

	A Hybrid Performance Prediction Approach for Fully-Connected Artificial Neural Networks on Multi-Core Platforms

