Giubilato, Riccardo und Le Gentil, Cedric und Vayugundla, Mallikarjuna und Schuster, Martin und Vidal-Calleja, Teresa und Triebel, Rudolph (2022) GPGM-SLAM: a Robust SLAM System for Unstructured Planetary Environments with Gaussian Process Gradient Maps. Field Robotics, 2, Seiten 1721-1753. Field Robotics Publication Society. doi: 10.55417/fr.2022053. ISSN 2771-3989.
PDF
- Verlagsversion (veröffentlichte Fassung)
12MB |
Offizielle URL: http://fieldrobotics.net/Field_Robotics/Volume_2_files/Vol2_53.pdf
Kurzfassung
Simultaneous Localization and Mapping (SLAM) techniques play a key role towards long-term autonomy of mobile robots due to the ability to correct localization errors and produce consistent maps of an environment over time. Contrarily to urban or man-made environments, where the presence of unique objects and structures offer unique cues for localization, the apperance of unstructured natural environments is often ambiguous and self-similar, hindering the performances of loop closure detection. In this paper, we present an approach to improve the robustness of place recognition in the context of a submap-based stereo SLAM based on Gaussian Process Gradient Maps (GPGMaps). GPGMaps embed a continuous representation of the gradients of the local terrain elevation by means of Gaussian Process regression and Structured Kernel Interpolation, given solely noisy elevation measurements. We leverage the imagelike structure of GPGMaps to detect loop closures using traditional visual features and Bag of Words. GPGMap matching is performed as an SE(2) alignment to establish loop closure constraints within a pose graph. We evaluate the proposed pipeline on a variety of datasets recorded on Mt. Etna, Sicily and in the Morocco desert, respectively Moon- and Mars-like environments, and we compare the localization performances with state-of-the-art approaches for visual SLAM and visual loop closure detection.
elib-URL des Eintrags: | https://elib.dlr.de/188132/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Titel: | GPGM-SLAM: a Robust SLAM System for Unstructured Planetary Environments with Gaussian Process Gradient Maps | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | August 2022 | ||||||||||||||||||||||||||||
Erschienen in: | Field Robotics | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
Band: | 2 | ||||||||||||||||||||||||||||
DOI: | 10.55417/fr.2022053 | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 1721-1753 | ||||||||||||||||||||||||||||
Verlag: | Field Robotics Publication Society | ||||||||||||||||||||||||||||
ISSN: | 2771-3989 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | planetary robotics, SLAM, localization, extreme environments, learning | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Planetare Exploration | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||||||||||||||
Hinterlegt von: | Giubilato, Riccardo | ||||||||||||||||||||||||||||
Hinterlegt am: | 15 Sep 2022 12:17 | ||||||||||||||||||||||||||||
Letzte Änderung: | 27 Feb 2024 11:13 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags