Singh, Sandeep Kumar und Fowdur, Jaya Shradha und Gawlikowski, Jakob und Medina, Daniel (2022) Leveraging Graph and Deep Learning Uncertainties to Detect Anomalous Maritime Trajectories. IEEE Transactions on Intelligent Transportation Systems. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TITS.2022.3190834. ISSN 1524-9050.
PDF
- Nur DLR-intern zugänglich
- Verlagsversion (veröffentlichte Fassung)
11MB |
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/9839418
Kurzfassung
Understanding and representing traffic patterns are key to detecting anomalous trajectories in the transportation domain. However, some trajectories can exhibit heterogeneous maneuvering characteristics despite confining to normal patterns. Thus, we propose a novel graph-based trajectory representation and association scheme for extraction and confederation of traffic movement patterns, such that data patterns and uncertainty can be learned by deep learning (DL) models. This paper proposes the usage of a recurrent neural network (RNN)-based evidential regression model, which can predict trajectory at future timesteps as well as estimate the data and model uncertainties associated, to detect anomalous maritime trajectories, such as unusual vessel maneuvering, using automatic identification system (AIS) data. Furthermore, we utilize evidential deep learning classifiers to detect unusual turns of vessels and the loss of transmitted signal using predicted class probabilities with associated uncertainties. Our experimental results suggest that the graphical representation of traffic patterns improves the ability of the DL models, such as evidential and Monte Carlo dropout, to learn the temporal-spatial correlation of data and associated uncertainties. Using different datasets and experiments, we demonstrate that the estimated prediction uncertainty yields fundamental information for the detection of traffic anomalies in the maritime and, possibly in other domains.
elib-URL des Eintrags: | https://elib.dlr.de/187933/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Leveraging Graph and Deep Learning Uncertainties to Detect Anomalous Maritime Trajectories | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Juli 2022 | ||||||||||||||||||||
Erschienen in: | IEEE Transactions on Intelligent Transportation Systems | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1109/TITS.2022.3190834 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 1524-9050 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Anomaly Detection; Evidential Deep Learning; Regression; Classification; Clustering; Graph; Uncertainty | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||
HGF - Programmthema: | Verkehrssystem | ||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||
DLR - Forschungsgebiet: | V VS - Verkehrssystem | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - FuturePorts | ||||||||||||||||||||
Standort: | Neustrelitz | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nautische Systeme | ||||||||||||||||||||
Hinterlegt von: | Medina, Daniel | ||||||||||||||||||||
Hinterlegt am: | 23 Aug 2022 13:35 | ||||||||||||||||||||
Letzte Änderung: | 26 Aug 2022 10:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags