Behrens, Gunnar and Beucler, Tom and Gentine, Pierre and Iglesias-Suarez, Fernando and Pritchard, Michael and Eyring, Veronika (2022) Non-Linear Dimensionality Reduction With a Variational Encoder Decoder to Understand Convective Processes in Climate Models. Journal of Advances in Modeling Earth Systems, 14 (8). Wiley. doi: 10.1029/2022MS003130. ISSN 1942-2466.
![]() |
PDF
- Published version
6MB |
Official URL: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022MS003130
Abstract
Deep learning can accurately represent sub-grid-scale convective processes in climate models, learning from high resolution simulations. However, deep learning methods usually lack interpretability due to large internal dimensionality, resulting in reduced trustworthiness in these methods. Here, we use Variational Encoder Decoder structures (VED), a non-linear dimensionality reduction technique, to learn and understand convective processes in an aquaplanet superparameterized climate model simulation, where deep convective processes are simulated explicitly. We show that similar to previous deep learning studies based on feed-forward neural nets, the VED is capable of learning and accurately reproducing convective processes. In contrast to past work, we show this can be achieved by compressing the original information into only five latent nodes. As a result, the VED can be used to understand convective processes and delineate modes of convection through the exploration of its latent dimensions. A close investigation of the latent space enables the identification of different convective regimes: (a) stable conditions are clearly distinguished from deep convection with low outgoing longwave radiation and strong precipitation; (b) high optically thin cirrus-like clouds are separated from low optically thick cumulus clouds; and (c) shallow convective processes are associated with large-scale moisture content and surface diabatic heating. Our results demonstrate that VEDs can accurately represent convective processes in climate models, while enabling interpretability and better understanding of sub-grid-scale physical processes, paving the way to increasingly interpretable machine learning parameterizations with promising generative properties.
Item URL in elib: | https://elib.dlr.de/187922/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||
Title: | Non-Linear Dimensionality Reduction With a Variational Encoder Decoder to Understand Convective Processes in Climate Models | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | August 2022 | ||||||||||||||||||||||||||||
Journal or Publication Title: | Journal of Advances in Modeling Earth Systems | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||
Volume: | 14 | ||||||||||||||||||||||||||||
DOI: | 10.1029/2022MS003130 | ||||||||||||||||||||||||||||
Publisher: | Wiley | ||||||||||||||||||||||||||||
ISSN: | 1942-2466 | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | machine learning, generative deep learning, convection, parameterization, explainable artificial intelligence, dimensionality reduction | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Atmospheric and climate research | ||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institutes and Institutions: | Institute of Atmospheric Physics > Earth System Model Evaluation and Analysis | ||||||||||||||||||||||||||||
Deposited By: | Behrens, Gunnar | ||||||||||||||||||||||||||||
Deposited On: | 27 Sep 2022 14:22 | ||||||||||||||||||||||||||||
Last Modified: | 05 Dec 2022 15:22 |
Repository Staff Only: item control page