elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Non-Linear Dimensionality Reduction With a Variational Encoder Decoder to Understand Convective Processes in Climate Models

Behrens, Gunnar und Beucler, Tom und Gentine, Pierre und Iglesias-Suarez, Fernando und Pritchard, Michael und Eyring, Veronika (2022) Non-Linear Dimensionality Reduction With a Variational Encoder Decoder to Understand Convective Processes in Climate Models. Journal of Advances in Modeling Earth Systems, 14 (8). Wiley. doi: 10.1029/2022MS003130. ISSN 1942-2466.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
6MB

Offizielle URL: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022MS003130

Kurzfassung

Deep learning can accurately represent sub-grid-scale convective processes in climate models, learning from high resolution simulations. However, deep learning methods usually lack interpretability due to large internal dimensionality, resulting in reduced trustworthiness in these methods. Here, we use Variational Encoder Decoder structures (VED), a non-linear dimensionality reduction technique, to learn and understand convective processes in an aquaplanet superparameterized climate model simulation, where deep convective processes are simulated explicitly. We show that similar to previous deep learning studies based on feed-forward neural nets, the VED is capable of learning and accurately reproducing convective processes. In contrast to past work, we show this can be achieved by compressing the original information into only five latent nodes. As a result, the VED can be used to understand convective processes and delineate modes of convection through the exploration of its latent dimensions. A close investigation of the latent space enables the identification of different convective regimes: (a) stable conditions are clearly distinguished from deep convection with low outgoing longwave radiation and strong precipitation; (b) high optically thin cirrus-like clouds are separated from low optically thick cumulus clouds; and (c) shallow convective processes are associated with large-scale moisture content and surface diabatic heating. Our results demonstrate that VEDs can accurately represent convective processes in climate models, while enabling interpretability and better understanding of sub-grid-scale physical processes, paving the way to increasingly interpretable machine learning parameterizations with promising generative properties.

elib-URL des Eintrags:https://elib.dlr.de/187922/
Dokumentart:Zeitschriftenbeitrag
Titel:Non-Linear Dimensionality Reduction With a Variational Encoder Decoder to Understand Convective Processes in Climate Models
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Behrens, GunnarDLR, IPAhttps://orcid.org/0000-0002-5921-5327NICHT SPEZIFIZIERT
Beucler, TomInstitute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerlandhttps://orcid.org/0000-0002-5731-1040NICHT SPEZIFIZIERT
Gentine, PierreDepartment of Earth and Environmental Engineering, Columbia University, New York, USAhttps://orcid.org/0000-0002-0845-8345NICHT SPEZIFIZIERT
Iglesias-Suarez, FernandoDLR, IPAhttps://orcid.org/0000-0003-3403-8245NICHT SPEZIFIZIERT
Pritchard, MichaelDepartment of Earth System Science, University of California Irvine, Irvine, CA, USAhttps://orcid.org/0000-0002-0340-6327NICHT SPEZIFIZIERT
Eyring, VeronikaDLR, IPAhttps://orcid.org/0000-0002-6887-4885NICHT SPEZIFIZIERT
Datum:August 2022
Erschienen in:Journal of Advances in Modeling Earth Systems
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:14
DOI:10.1029/2022MS003130
Verlag:Wiley
ISSN:1942-2466
Status:veröffentlicht
Stichwörter:machine learning, generative deep learning, convection, parameterization, explainable artificial intelligence, dimensionality reduction
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Atmosphären- und Klimaforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Physik der Atmosphäre > Erdsystemmodell -Evaluation und -Analyse
Hinterlegt von: Behrens, Gunnar
Hinterlegt am:27 Sep 2022 14:22
Letzte Änderung:05 Dez 2022 15:22

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.