Rao, Lanlan und Xu, Jian und Dmitry, Efremenko und Loyola, Diego und Doicu, Adrian (2022) Aerosol Parameters Retrieval from TROPOMI/S5P Using Physics-Based Neural Networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, Seiten 6473-6484. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2022.3196843. ISSN 1939-1404.
PDF
- Verlagsversion (veröffentlichte Fassung)
27MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9851509/
Kurzfassung
inn this paper, we present three algorithms for aerosol parameters retrieval from TROPOMI measurements in the O2 A-band. These algorithms use neural networks (i) to emulate the radiative transfer model and a Bayesian approach to solve the inverse problem, (ii) to learn the inverse model from the synthetic radiances, and (iii) to learn the inverse model from the principal-component transform of synthetic radiances. The training process is based on full-physics radiative transfer simulations. The accuracy and efficiency of the neural network based retrieval algorithms are analyzed with synthetic and real data.
elib-URL des Eintrags: | https://elib.dlr.de/187857/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Aerosol Parameters Retrieval from TROPOMI/S5P Using Physics-Based Neural Networks | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 5 August 2022 | ||||||||||||||||||||||||
Erschienen in: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 15 | ||||||||||||||||||||||||
DOI: | 10.1109/JSTARS.2022.3196843 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 6473-6484 | ||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Aerosol information retrieval; neural networks; TROPOMI/S5P. | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Spektroskopische Verfahren der Atmosphäre | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Atmosphärenprozessoren | ||||||||||||||||||||||||
Hinterlegt von: | Rao, Lanlan | ||||||||||||||||||||||||
Hinterlegt am: | 17 Aug 2022 08:51 | ||||||||||||||||||||||||
Letzte Änderung: | 14 Mär 2023 16:41 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags