Rao, Lanlan und Xu, Jian und Dmitry, Efremenko und Loyola, Diego und Doicu, Adrian (2022) Aerosol Parameters Retrieval from TROPOMI/S5P Using Physics-Based Neural Networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, Seiten 6473-6484. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2022.3196843. ISSN 1939-1404.
|
PDF
- Verlagsversion (veröffentlichte Fassung)
27MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9851509/
Kurzfassung
inn this paper, we present three algorithms for aerosol parameters retrieval from TROPOMI measurements in the O2 A-band. These algorithms use neural networks (i) to emulate the radiative transfer model and a Bayesian approach to solve the inverse problem, (ii) to learn the inverse model from the synthetic radiances, and (iii) to learn the inverse model from the principal-component transform of synthetic radiances. The training process is based on full-physics radiative transfer simulations. The accuracy and efficiency of the neural network based retrieval algorithms are analyzed with synthetic and real data.
| elib-URL des Eintrags: | https://elib.dlr.de/187857/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
| Titel: | Aerosol Parameters Retrieval from TROPOMI/S5P Using Physics-Based Neural Networks | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | 5 August 2022 | ||||||||||||||||||||||||
| Erschienen in: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||
| Gold Open Access: | Ja | ||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||||||
| Band: | 15 | ||||||||||||||||||||||||
| DOI: | 10.1109/JSTARS.2022.3196843 | ||||||||||||||||||||||||
| Seitenbereich: | Seiten 6473-6484 | ||||||||||||||||||||||||
| Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
| ISSN: | 1939-1404 | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | Aerosol information retrieval; neural networks; TROPOMI/S5P. | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Spektroskopische Verfahren der Atmosphäre | ||||||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Atmosphärenprozessoren | ||||||||||||||||||||||||
| Hinterlegt von: | Rao, Lanlan | ||||||||||||||||||||||||
| Hinterlegt am: | 17 Aug 2022 08:51 | ||||||||||||||||||||||||
| Letzte Änderung: | 14 Mär 2023 16:41 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags