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Abstract—In this paper, we present three algorithms for aerosol
parameters retrieval from TROPOMI measurements in the O-
A-band. These algorithms use neural networks (i) to emulate the
radiative transfer model and a Bayesian approach to solve the
inverse problem, (ii) to learn the inverse model from the synthetic
radiances, and (iii) to learn the inverse model from the principal-
component transform of synthetic radiances. The training process
is based on full-physics radiative transfer simulations. The
accuracy and efficiency of the neural network based retrieval
algorithms are analyzed with synthetic and real data.

Index Terms—Aerosol information retrieval; neural networks;
TROPOMI/SSP.

I. INTRODUCTION

EROSOLS affect Earth’s radiation budget by scattering

and absorbing solar radiation (direct effect) and by
influencing the cloud formation processes (indirect effect).
Highly absorbing aerosols also have a warming effect on
the atmosphere leading to the evaporation of cloud particles,
which results in a reduction of the cloud cover (semi-direct
effect). Accurate assessments of aerosol properties, such as
optical depth and layer height, are important for the global
monitoring of air pollution in the lower atmosphere.

A number of passive satellite sensors enable to monitor
aerosol properties on both regional and global scale using
spectral information at various wavelengths. For instance,
measurements in the O, A-band from the Global Ozone
Mapping Experiment (GOME) [1] and GOME-2 [2], the
Scanning Imaging Absorption Spectrometer for Atmospheric
CHartographY (SCIAMACHY) [3H5], the Greenhouse Gases
Observing Satellite (GOSAT) [6], and the TROPOspheric
Monitoring Instrument (TROPOMI) onboard the Sentinel-5
Precursor (S5P) [[7, 18] are used to retrieve aerosol optical depth
and height information.

The inversion methods used in atmospheric remote sensing
aim to recover atmospheric parameters by minimizing the
residual between the measurements and the radiative transfer
model simulations. The solution of the minimization problem
can be found by using deterministic (e.g., Tikhonov-type
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regularization methods [9, [10]) or stochastic approaches (e.g.,
Bayesian methods [[L1]]). In both cases, the computations of
the forward model and the Jacobian matrix impose the perfor-
mance bottleneck in the whole processing chain. Therefore,
it would be problematic to adopt these approaches for the
operational processing of remote sensing data from new-
generation sensors. To tackle this problem, artificial neural
networks, which are able to approximate very quickly any
continuous function with a sufficiently high accuracy [12} [13]]
and to estimate the derivatives of the function with respect
to the model inputs, can be used. Actually, a trained neural
network may provide accurate estimates of the forward model
and its Jacobian, in a fraction of time compared to classical
retrieval algorithms. In atmospheric remote sensing, neural
networks have already been widely applied. These techniques
have been used (i) to approximate a radiative transfer model
(or a part of it) [14H19]], (ii) to learn the inverse mappings [20-
28], and (iii) to recover some atmospheric retrieval parameters,
which are then taken as initial guesses in an optimization
approach [29} [30]]. In this context, it should be pointed out
that the two TROPOMI operational retrieval algorithms based
on the O, A-band measurements, use neural network based
forward models together with a Bayesian approach for the
retrieval of cloud properties [31, [32] and the aerosol layer
height [33H335].

In this study, we present three types of neural networks
for aerosol retrieval from TROPOMI measurements. The first
one uses a neural network to emulate the radiative transfer
model and a Bayesian approach to solve the inverse problem,
the second one uses a neural network to learn the inverse
model from the synthetic radiances, and the third one uses a
neural network to learn the inverse model from the principal-
component transform of synthetic radiances following the full-
physics inverse learning machine method [18]. The major
goal of this study is to incorporate the three neural-network
algorithms into a common tool, and to analyze and compare
their retrieval performances. To the best of our knowledge,
such a comparison study had not been done before. The paper
is organized as follows. In Section [l we summarize the
main features of the adopted radiative transfer model, while in
Section we provide a detailed description of three physics-
based algorithms using neural networks. In Section the
corresponding retrieval performances of the neural networks
are analyzed using synthetic and real TROPOMI data.

II. RADIATIVE TRANSFER MODEL

Any physics-based retrieval algorithm uses a model for
computing the radiative transfer in a planetary atmosphere.
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We begin our analysis by summarizing the peculiarities of the
radiative transfer model used in this study.

Regarding the TROPOMI instrument, each swath row (an-
gle) r with» =1,..., R, is characterized by its own measure-
ment wavelength grid {\], k};f;‘} and slit function g,., where R
is the number of swath rows and Ny, the number of spectral
grid points. This is due to the optics of the spectrometer
(point spread function, aberrations, and defocusing) and small
changes in the width of the slit. The noisy and synthetic
radiances measured by the instrument at a wavelength A7 .
are given respectively, by

IP(Ane) = T(AL) =+ Ok, (1)
IO\ = / (W — NIV dA, @)

where I(\) is the radiance computed by a radiative transfer
model at a forward wavelength A (before convolution) and §,
the measurement noise. Note that because {\”,, } 7"} changes
slightly with r, we assumed that the noise is row independent.

The synthetic radiances () are computed on the forward
wavelength grid by a radiative transfer model relying on the
discrete ordinate method with matrix exponential [36} 37]. To

speed up the computation,

o standard acceleration methods, i.e., the telescoping tech-
nique [38} [39] and the method of false discrete ordinate
[40]], as well as

« hyperspectral acceleration methods, i.e., the correlated k-
distribution method [41] and principal component analy-
sis [42H46]],

are employed. Line-by-line calculations [47] with optimized
rational approximations for the Voigt line profile [48] (taken
from HITRAN database [49]) are used to compute the ab-
sorption cross sections of gas molecules, the methodology
describe in [50] is used to compute the Rayleigh cross-section
and depolarization ratios, and the delta-M approximation [S1]]
and TMS (Truncated Multiple and Single scattering approxi-
mation) correction [52, [53]] are used in the radiative transfer
calculations. The radiative transfer model includes several
types of bidirectional reflectance distribution functions over
land and water. However, in order to simplify the analysis,
we use the geometry-dependent effective Lambertian equiva-
lent reflectivity (GE_LER) product that accounts for satellite
viewing dependencies and improves the accuracy for actual
snow/ice conditions [28]].

The aerosol optical depth 7 and layer height I are retrieved
in the oxygen absorption A-band (758-771 nm). To simplify
the analysis, the aerosol layer is assumed to be homogeneous
with a fixed thickness of 0.5 km, spreading evenly from H —
0.25km to the H 4 0.25km. As the considered spectral range
is narrow, the aerosol optical depth is assumed to be constant
within this range. There are five sets of aerosol microphysical
models [54, 55] included in the radiative transfer model under
the assumption of spherical aerosol particles. For example, the
set of aerosol models taken from the MODIS Dark-Target (DT)
algorithm [56] includes: non-absorbing, moderately absorbing,
and absorbing aerosols, as well as, desert dust. Each aerosol
model is characterized by a bi-mode log-normal volume size

distribution comprising a fine and a coarse mode. Specifically,
in the case of moderately absorbing aerosols, the median
radius of the fine mode ry¢ and the coarse mode 7. are given
respectively, by

ryr = 0.145 + 0.02037 (um), 3)
Tve = 3.101 + 0.33647 (um), 4

the standard deviations of the fine mode s¢ and the coarse
mode s. by

sf = 0.374 + 0.13657, (5)
sc = 0.729 4+ 0.0987, (6)

the volumes of the fine mode particles V{; and the coarse mode
particles V{. by

Vor = 0.16427%77 (um? /um?), (7)
Voo = 0.148279-%84 (ym?® / ym?), (8)

and the complex refractive index of the aerosol particles by
m = (1.43, 0.008 — 0.0027). Note that the parameters of the
size distribution and the refractive index depend on the aerosol
optical depth 7. In addition, the radiative transfer model can
deal with several types of aerosol profiles, as for example,
elevated box, exponential decay, a combination of exponential
decay and ground box, and Gaussian.

III. NEURAL NETWORK ALGORITHMS

In this study, neural networks are employed (i) to emulate
the radiative transfer model and (ii) to learn the inverse model.
The first one is referred to as a neural network for the forward
operator, whereas for the second one a neural network for the
inverse operator.

The neural network approach can be briefly summarized as
follows. Let us consider the model y = F(x), where x € R
and y € R™ are the input and output vectors, respectively,
and F is a deterministic function. In order to approximate
F(x) by a neural network model f(x,w) with parameters w,
we consider a deep neural network consisting of units (nodes)
arranged in an input, output, and several hidden layers. For a
neural network with L + 1 layers and IV; units in layer [, the
feed-forward operations read as

w = Wy;—1 + by, &)
yl:d)l(ul), lZl,...,L, (10)

where | = 0 and [ = L are the input and output layers, re-
spectively, ¢; is the layer activation function, W; € RNt *Ni-1
the matrix of weights connecting the layers [ — 1 and [,
b; € RM the vector of biases corresponding to layer [, and
w = {W;,b;}L | the set of network parameters. In the input
and output layers, we have yo = x and y; = f(x,w),
respectively, so that, Ng = Ny and Ny = Ny. Deep learning
is the process of computing the network parameters w on a
data set D = {(x™), y(™)}N_  where y(") = F(x(")) and N
is the number of samples. This is done by computing a point
estimate & as the minimizer of a loss function with a penalty
term controlling the amplitudes of the network parameters, i.e.,
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Fig. 1. Mean square error for the validation data set. The results correspond to all neural networks considered in this study, i.e., the forward-operator neural
network (), the inverse-operator neural network with synthetic radiances (b), and the inverse-operator neural network with the principal-component transform

of synthetic radiances (c).

TABLE I
VALUE RANGES OF THE OPTICAL AND GEOMETRICAL PARAMETERS FOR
GENERATING THE DATA SET.

Parameter Value range
T 0.05 -5
H 0.1 —15.75km
0o 0—75°
0 0—170°
Ap 0 — 180°
H 0 — 2.61km
As 0-04

E(w) = 3 Y00 [ly™ = £(x), w)|| 4 y]|w] 2, where v is
the regularization parameter.

To formulate the retrieval problem, we group the optical and
geometrical parameters into

o retrieval parameters, which include the aerosol optical
depth 7 at 760nm and aerosol layer height H defined
as the middle height of an aerosol layer with a fixed
thickness of 0.5km, and

o forward model parameters, which include the solar zenith
angle 6y, viewing zenith angle 6, relative azimuth angle
Ay, surface height H;, and surface albedo A (note
that the forward model parameters are not part of the
retrieval).

For generating the data set, samples of optical and geomet-
rical parameters are produced by means of a smart sampling
technique [57]] based on Halton sequences [58]]; their ranges
of variations are shown in Table [l The neural networks are
trained for the moderately absorbing aerosol model from the
MODIS DT algorithm.

The hyperparameters of the neural network, i.e., the number
of hidden layers and the number of units in each layer, are
optimized by using 10% of the samples from the training
set for validation. In the validation stage, the holdout cross-
validation and a grid search procedure are used; the grid
search is performed over the sets {2,3,4} of hidden layers
and {20, 40, 60, 80,100} of layer units. For all neural network
considered in this study, a network architecture with 4 hidden
layers and 40 units in each layer yields the lowest mean-square
error on the validation data set (see Fig. E]), and no over-fitting
has been observed. A hyperbolic tangent activation function
is taken, and as optimization tool, the mini-batch gradient
descent with ADAptive Moment Estimation (ADAM) [59] is

utilized.

A. Neural network for the forward operator

For emulating the radiative transfer model, we consider a
neural network in which, the input x is the set of optical and
geometrical parameters, while the output y is the set of syn-
thetic radiances I()\;) computed on the forward wavelength
grid {\, 112, ie.

[r, H]"

_ Ny
[90, 9) AQD,HS, AS]T Yy = [I()‘k)]kzl

X = (11)
Thus, the dimensions of the input and output vectors are Ny =
7 and Ny = N, respectively.

The forward wavelength grid consists of Ny = 465 equidis-
tant spectral points ranging from 757.4 to 771.6 nm, while
the number of samples in training set is N, = 151423 based
on the number of combinations of optical and geometrical
parameters defined by Table I After the radiative transfer
model is learned, the synthetic radiances computed at a high
spectral resolution on the forward wavelength grid I(\g) are
convolved with a slit function g, to obtain the synthetic
radiances on the measurement wavelength grid I(A},) (cf.
Eq. @)).

The retrieval of aerosol parameters encapsulated now in the
state vector x = [, H]” requires the solution of the non-linear
equation

¥’ = F(x) + b, (12)

where, for a given swath row 7, ¥ = [Ipes( ;k)]ffg}

is the
measurement vector, F(x) = [I( gk)]ff;i the forward model,
and 6, = [5mk];€\/$ the measurement noise vector. The non-
linear equation (I2) is solved by using a Bayesian approach
[I1]. In this approach, the a posteriori density p(x | y°)
representing the conditional probability density of the state
vector x given the data y? is the quantity of interest. Assuming
that

1) the measurement noise vector d,, is a Gaussian random
vector with zero mean and noise covariance matrix
Cn = diag[o2,]0™ = 02Cum, i, 0m ~ N(0,Cp),
where 02 = Y ;") 02, is the noise variance, and

2) the state vector x is a Gaussian random vector with mean
x, and a priori covariance matrix Cy = diag[o?, |0, =
02Cy, ie., x ~ N(x,,Cy), where x, is the a priori
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N, . .
state vector, 02 = Y., 02 the a priori state variance,
and the notation N (Xmean, Cx) symbolizes a normal
distribution with mean X, and covariance matrix Cy,

we find
p(x | ¥%) o exp[ =3 Valx | )] (13)
where
1
Valxly®) = —{Iy’ - Flea' [y — F(x)]” "

Yx — Xa)T}

is the a posteriori potential and o = 02 /02 the regularization
parameter. Here, the notation A (Xmean, Cx) stands for a nor-
mal distribution with mean Xp.,, and covariance matrix C,.
The maximum a posteriori estimate X’ is then computed as

5)

+a(x—x,)C

X% = argmin V,, (x]y?).
X

After scaling the data model (12) with the matrix P = C_; 172,
i.e., after transforming the data model into a model with Whlte
noise, and introducing the regularization matrix L through
the Cholesky factorization C, L= LTL, we are led to a
least-squares problem which is solved by using the iteratively
regularized Gauss-Newton method [60]. This method supplies
the optimal value of the regularization parameter and the
corresponding regularized solution.

In the inversion step, the noise covariance matrix is chosen

as Cp = diag[o?, ], with o, = 0.02 X T(Amk) and
I(Amr) = (1/R)>,_ I(An,) for all k = 1,..., Ny, and
the a priori covarlance matrix as Cx = diag[o2|7_, with

oxkx = 0.2 X xp, and zj, standing for 7 and H.

B. Neural network for the inverse operator

For solving the inverse problem, we designed two types
of neural networks following the full-physics inverse learning
machine method. The first one uses as input, the synthetic
radiances computed on the measurement wavelength grid,
while the second one uses as input, the principal-component
transform of synthetic radiances.

1) Neural network for the inverse operator with synthetic
radiances: In principle, for emulating the inverse model, we
may use a neural network in which, the input x includes the
noisy radiances on a measurement wavelength grid and the
forward model parameters, while the output y includes the set
of parameters to be retrieved, i.e.,

x = [I( mk)+5mk] mT —y =

[r, H]*
[907 97 A807 HSa AS}

(16)
In this case, the dimensions of the input and output vectors
are Ny = Npy + 5 and Ny = 2, respectively.

The problem which appears is that because we are dealing
with a random measurement noise and a set of measurement
wavelength grids, the same output corresponds to different
realization of the random noise, as well as, to different
wavelength grids. To reduce the dimension of the data set,
we use the jitter approach under the assumption that the
measurement wavelength grid {7, }, ‘“} is a discrete random

variable which can take the values {\L, }om, ... {AE }m,
According to this approach, at each forward pass through
the network, a measurement wavelength grid {A\l k}k“‘} is
randomly selected from the R wavelength grids, and a new
random noise dmi ~ N(0,02,) is added to the synthetic
radiance I(7 ;). In other words, the input sample is different
every time it is passed through the network.

In the training stage, the number of swath rows is R = 448,
the number of points in each measurement wavelength grid is
Npy = 131, and the measurement wavelength grids are chosen
from the TROPOMI Level-1 product, e.g.,

(AL my = {755.120, . ..,770.929 nm},
{02 Jmy = {755.133,...,770.942nm}

a7
{A ROy = {755.264,...,771.071 nm},

As before, the noisy spectra are generated with the noise
standard deviation o = 0.02 X I(Ami), where T(Apg) =
(1/R) Zf;l I(A\})- The number of samples in the training
set is Ny = 404901, where each sample consists of a set
of optical and geometrical parameters and the corresponding
synthetic radiances computed on all measurement wavelength
grids {7, kmf, r=1,...,R.

2) Neural network for the inverse operator with the
principal-component transform of synthetic radiances: To
reduce the dimension of the synthetic radiance vector i, =
[1( fnk)]szm} € RN» | the principal component analysis is
applied. Here, the dependency of i, on the swath row ris
implicitly assumed. For the N;-dimensional data set {i }n 1>
let (in) = (1/N) SN i be the sample mean of the
data. The goal of a hnear embedding method is to find
an M-dimensional subspace (M < Np)) spanned by a
set of linear independent vectors {uj}iL,, such that the
centered data 1( n < > belongs mainly to this subspace,

~ <1 > + UMlm), where Uy, = [ug,...,uy] €
RN'MXM is the (inverse) mapping from the low- to the high-
dimensional space. The dimensionality-reduced input is then
i =ut (im i — (im)) € RM, where the (forward) mapping
from the high- to the low- dlmensmnal space Ul € RM>*Nm
is the pseudo-inverse of Uy, i.e., UMUM = IM In the prin-
cipal component analysis, the transformation matrix Uy, is
computed as follows: (i) stack all centered data 1( n) <im> into

the columns of the matrix Z, i.e., Z = [i Snl) — <im>, . 1r(nN) —
(im)] € RN=2xN (i) compute the covariance matrix C =
(1/N)ZZT € RNm»*Nnx and a singular value decomposition
of C, ie., C = UXU7T, where ¥ = diag[ok]kNgi is the
diagonal matrix of the singular values o1 > o9 > ... >
oN,, > 0and U = [ul,...,uNm] € RNmxXNmx s the
orthogonal matrix of the singular vectors, and (iii) take the
inverse transformation matrix as Uy, = [uy,...,upy] €
RNmxXM “Tn this case, the forward transformation matrix is
UT =UT, eRM XN‘“*. The number of principal components
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Fig. 2. Contribution of the first 14 principal components to the total variance
(top) and reconstruction error with respect to the first 14 principal components
(bottom).

M is determined by monitoring the reconstruction error

N,

Ex =Y |G ¢
n;ll

= D> GG = (i) - (im))I13

as function of M, and the M, for which Fj; is below a
prescribed tolerance, is chosen. For the noisy radiance vector
i0 = in + Om, Where 8, ~ N(0,Cy,) is the measurement
noise vector, we find (if,) = (im), yielding iy, = UF,(ij, —
Q — i, + 0, with 8, = Ut 6, ~ N(O, ém) and

m — UA/[C UM c R]VIX]VI

Thus, instead of the synthetic radiances i, € R the
input of the neural network is the principal-component trans-
form of synthetic radiances i, € R, and during each forward
pass through the network, the random noise 8 ~ N (0 (0, m)
is added to ip. To simplify the computation, we approximate
the dimensionality-reduced noise covariance matrix C by a
diagonal matrix, i.e., C dlag[kak] wey, Where Cm” are
the entries of C . Through a numerical analysis we found that
for M = 14, Ej; < 1.6 x1073; thus, 14 principal components
appears to be sufficient for aerosol retrieval. The corresponding
analysis results for the first 14 principal components are shown
in Fig. 2]

It should be pointed out that the number of principal
components M can be also determined by reducing the
measurement noise g29]. In this case, the reconstruction error
By = S G = (in)) — Un Ul ™ = (in))I is
monitored, and the M that minimizes FE; is chosen.

in)) — Unl”|[3
(18)
U U, (Y -

Nm)\

IV. RESULTS AND DISCUSSION

In this section we analyze the retrieval performances of the
neural network retrieval algorithms using the synthetic and real
TROPOMI data.

A. Synthetic retrieval

To test the performances of the retrieval algorithms on
synthetic data, we consider a prediction or a test set consisting
of N, = 11868 samples

(™, H 60 00 Ap™ HM AM) (19)

chosen randomly in their assumed intervals of variation. For
the forward-operator neural network equipped with a Bayesian
approach, the initial and a priori values for the aerosol optical
depth and layer height are 2 and 2 km, respectively.

To interpret the results, we split the interval of variation of
Z, [Tmin, Tmax], Where x stands for 7 and H, into N, = 40
equidistant bins, i.e., [Zmin, Tmax] = UéV:blej, and compute
the (bin) mean

1 (n)
E;j(Zprea) = N S g (20)
n,s.t.z(") EBy;
and standard deviation
VEs (1Zprea — Ej (Zprea)]?)
21

1 n
=l X e Bl
zJ

n,s.t.z(") EBy;
over all N,; samples x;rgd, whose corresponding z(™ are in
B,;. To quantify the retrieval accuracy we use the first two
moments of the absolute error over the prediction set A, =
Tpred — T, Where Tpreq and x are the predicted and true values,
respectively. These are the mean absolute error

E(|A.) = Z A (22)
p n=1
and the standard deviation of the absolute error
1
E([A, —E(A)2) = | — S [A —E(a,))2. @3
VB, “EEIP = | 5 3 (A2 @3)

In Fig. Bl the mean E;(peq) and standard deviation
\/E ([zpred — Ej(2prea)]?) are plotted versus the midpoint
T; of the jth bin, while in Table |E| we show the mean
absolute error E(|A,|) and the standard deviation of the
absolute error \/E([A, — E(A,)]?) over the prediction set.
Note that (i) /E([A, — E(A,)]?) reproduces the square root
of the diagonal elements of the so-called epistemic covariance
matrix of all network errors over the prediction set, and (ii) the
epistemic uncertainties are large if there are large variations
around the mean, e.g., if \/E ([zprea — Ej(zprea)]?) are large.
Also note that non-optimal hyper- and training parameters, as
well as, a non-optimal optimization algorithm are the main
sources of epistemic or model uncertainty [61]]. The following
conclusions can be drawn.

1) In general, the accuracy is low for small values of the
aerosol optical depth 7 and layer height H.

2) The inverse-operator neural networks with synthetic
radiances and the principal components of synthetic
radiances have comparable accuracies; these are higher
than that of the forward-operator neural network. The
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low accuracy of the forward-operator neural network,
especially for small value of the aerosol optical depth
and layer height, is due to the fact that in this domain, the
residual function has several local minima and the global
minimum cannot be found by the iteratively regularized
Gaussian method (which is a local optimization method).

Hored (k)

8 10 12 14
H(km)

Hre (km)

Hrod (k)

0
0 2 4 6

10 12 14

8
H(km)

Fig. 3. Predictions of the forward-operator neural network (top row),
the inverse-operator neural networks with synthetic radiances (middle row)
and the principal-component transform of synthetic radiances (bottom row),
respectively. The plots show the predicted values xérzgl (blue points) to-
gether with the mean E;(xpreq) (red points) and standard deviation

\/IEJ- (Zpred — Ej(2pred)]?) (red error bars) over all samples :pgrlgd, whose

corresponding (™) are in the jth bin. The value range of z is split into
Np = 40 bins, where = stands for the aerosol optical depth 7 and aerosol
layer height H.

The variations of the absolute error A, = Zpeq — x With
respect to the optical and geometrical parameters are illustrated
in Figs. @ [l and [6] As before, each interval of variation of
a parameter b, [bumin, bmax] 18 split into N, = 40 equidistant
bins, i.e., [bmin, Omax] = U;-V:"lej, and the mean E;(A,) and
standard deviation \/E;([A, —E;(A;)]?) over all samples
A&”’, whose corresponding b(™ are in the jth bin By;, are
plotted versus the midpoint Bj of the bin. The plots show that

1) the standard deviation of the absolute error in the aerosol
optical depth 7 is large when 7 is small, and the solar
zenith angle 0y, viewing angle 6 and surface albedo A;
are large;

2) the standard deviation of the absolute error in the aerosol
layer height H is large for small values of the aerosol

TABLE I
MEAN ABSOLUTE ERROR E(|Az|), AND THE STANDARD DEVIATION OF
THE ABSOLUTE ERROR /E([A; — E(Az)]?) OVER THE PREDICTION SET.
THE RESULTS CORRESPOND TO THE FORWARD-OPERATOR NEURAL
NETWORK (METHOD 1), AND THE INVERSE-OPERATOR NEURAL
NETWORKS WITH SYNTHETIC RADIANCES (METHOD 2) AND THE
PRINCIPAL-COMPONENT TRANSFORM OF SYNTHETIC RADIANCES

(METHOD 3).
Method = E(Az]) E([Az —E(AL)]?)
) T 0.169 0.410
H 03879 1.749
5 T 0.115 0.243
H 0336 0.740
3 T 0.136 0.316
H  0.437 0.951

optical thickness 7 and large values of the surface albedo
As;

3) the smallest standard deviations correspond to the
inverse-operator neural network with synthetic radi-
ances, while the largest correspond to the forward-
operator neural network.

For instance in Fig. [ (the forward-operator neural network),
the standard deviation in A, can be of 1.14 for small values
of 7, and of 0.69, 0.64, 0.92 for large values of g, 6, and As,
respectively, whereas the standard deviation in Ay can be of
5.32km for small values of 7 and of 2.36 km for large values
of As.

B. Retrieval from real data

To investigate the performances of the retrieval algorithms
on real TROPOMI data, we first choose a wild fire scene in
California on 12 December 2017. In this case, the surface
albedo is given by the GE_LER product [28], and pixels with

1) a cloud fraction (taken from the operational TROPOMI
cloud product (OCRA/ROCINN) [31])) greater than 0.25,
or

2) an aerosol absorbing index (taken from the TROPOMI
Level-2 AAI product) lower than 1,

are not considered in the retrieval.

The retrieval results for the aerosol optical depth and layer
height are illustrated in Fig. With the results by the
inverse-operator neural network with synthetic radiances as a
reference, Fig. |§| shows the absolute differences in the retrieved
aerosol optical depth 0 = Tpred —T;f‘fd and aerosol layer height
0 = Hprea — H{)‘;’gd corresponding to the forward-operator
neural network and the inverse-operator neural network with
the principal-component transform of synthetic radiances. The
plots demonstrate that the differences in the retrieved aerosol
optical depth J, are smaller than 0.1 over the entire scene,
while the absolute differences in the retrieved aerosol layer
height 6 are smaller than 0.4 km.

Finally, we compare the retrieval results between the three
neural network based algorithms and the official operational
algorithm for the entire year of 2019. From Fig. [0 the
following features are apparent.
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Fig. 5. The same as in Fig. [f] but for the inverse-operator neural network
with synthetic radiances.

G i ; ! i ;
H, (km) Hs (km) . .
1) The mean values of the aerosol optical depth delivered
Fig. 4. Absolute error in the retrieved aerosol optical depth A, and by the three neural network algorithms are in general
aerosol layer height Ap versus the optical and geometrical parameters b, underestimated. The reason for this discrepancy is that

where b stands for the aerosol optical depth 7, aerosol layer height H,

. e . ; . the official retrieval algorithm uses different aerosol
solar zenith angle g, viewing zenith angle 0, relative azimuth angle A,

surface albedo As, and surface height Hs. The results correspond to the microphySical properties (a fact also seen in the previous
forward-operator neural network. The plots show the absolute error A&’” study [Izﬂ)

(blue points) together with the mean E;(Az) (red points) and standard 2) The mean values of the aerosol layer height delivered
deviation +/E; ([A; — Ej(A,)]?) (red error bars) over all samples A", by the three neural network algorithms agree well with

whose corresponding b(") are in the jth bin. The interval of variation of each

parameter b s split into Ny — 40 bins those by the operational retrieval algorithm. However,

as expected, a better agreement can be seen between
the forward-operator neural network and the operational
algorithm whose forward model adopts the neural net-
work approach [33].

It should be pointed out that the computational time of a
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Fig. 6. The same as in Fig. [f] but for the inverse-operator neural network
with the principal-component transform of synthetic radiances.

physic-based retrieval algorithm using online radiative transfer
calculations is approximately 3 minutes for one ground pixel
on a computer Intel Core i7-4770 CPU 3.40GHz with 16
GB RAM, while the computational time of a forward-and
an inverse-operator neural networks are 0.4s and 0.003s,
respectively. For these calculations, the Bayesian approach
typically converges in less than five iterations.

Likewise, we perform a comparison with the weighted
aerosol heights derived from the CALIPSO (Cloud-Aerosol
LIDAR Infrared Pathfinder Satellite Observations) Level-2
aerosol extinction profile product for the entire year of
2019. The weighted aerosol height is computed as a linear
combination of the heights above the sea level weighted
by the corresponding extinction coefficients. Fig. depicts
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Fig. 7. Retrieved aerosol optical depth Teq and aerosol layer height Hpyeq
from TROPOMI measurements recorded on 12 December 2017 in California.
The results correspond to the forward-operator neural network (the first row),
the inverse-operator neural network with synthetic radiances (the second row),
the inverse-operator neural network with the principal-component transform
of synthetic radiances (the third row), and the TROPOMI official operational
product (the fourth row).
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Fig. 8. Absolute differences in the retrieved aerosol optical depth ¢, and
aerosol layer height d ;7 corresponding to the forward-operator neural network
(upper panels) and the inverse-operator neural network with the principal-
component transform of synthetic radiances (lower panels). The results
provided by the inverse-operator neural network with synthetic radiances are
taken as a reference.

the histograms of the differences in aerosol layer height
(TROPOMI minus CALIPSO), where a TROPOMI value is
the mean value over all TROPOMI pixels within a distance of
100km to a single CALIPSO pixel. The difference F(Ap)+
VE(Ag — E(Ap)]?) is highest for the forward opeartor
neural network (1.54 £ 1.62km), whereas a better agreement
with the CALIPSO product is apparently achieved by the
inverse operator with synthetic radiances (1.38 +1.47 km) and
the inverse operator with the principal-component transform
of synthetic radiances (1.48 & 1.43 km).

V. CONCLUSIONS

In this paper, we have developed three neural network
algorithms for aerosol retrieval from TROPOMI measurements
in the Oz A-band.

1) The first algorithm uses a neural network to emulate
the radiative transfer model and a Bayesian approach to
solve the inverse problem. To speed up the computation,
the radiative transfer model combines standard accelera-
tion methods (the telescoping technique and the method
of false discrete ordinate) with hyperspectral accelera-
tion methods (the correlated k-distribution method and
the principal component analysis). The inverse problem
is solved by using the iteratively regularized Gauss-
Newton method, which provides at the same time the
optimal value of the regularization parameter and the
corresponding regularized solution.

This work is licensed under a Creative Commons Attribution 4.0 License.

2) The second and third algorithms employ a neural net-
work to learn the inverse model and use as input either
the synthetic radiances computed on the measurement
wavelength grid or the principal-component transform
of synthetic radiances. The design of an inverse-operator
neural network for TROPOMI/SSP is not a trivial task
because, on the one hand, we are dealing with random
measurement noise and, on the other hand, there are a
large number of measurement wavelength grids corre-
sponding to each swath row. To solve this problem, we
used the jitter approach. More precisely, in the training
stage and at each forward pass through the network, a
measurement wavelength grid is randomly selected from
a set of possible wavelength grids, and a new random
noise is added to the synthetic radiance. Note that in
the algorithm relying on the principal-component anal-
ysis, the random noise is described through an analytic
dimensionality-reduced noise covariance matrix.

The neural networks are incorporated into a common tool
and their performances are analyzed and compared with syn-
thetic and real data. Our numerical analysis has shown that
the inverse-operator neural networks are more accurate and
efficient than a forward-operator neural network. The reason
is that for small values of the aerosol optical depth and layer
height, the residual function has several local minima, and in
the latter case, the inversion method which is a local optimiza-
tion method, cannot determine the global minimum. These
results may suggest that a TROPOMI operational retrieval
algorithm can be built on an inverse-operator neural network
rather than on a forward-operator neural network.

The design and refinement of neural networks for atmo-
spheric retrieval is a very complicated research field that
requires more developments that consist of

1) application of the inverse-operator neural networks to
the remaining aerosol models considered in the MODIS
algorithm, i.e., non-absorbing, absorbing, and desert dust
(the selection of an appropriate aerosol model is then
based on a combination of spectral and geographic
information);

2) training the neural networks to learn the relative ev-
idences of different aerosol models, so that, a mean
solution estimate, representing a linear combination of
candidate solutions weighted by their evidences, can be
computed [62]];

3) redesign of the neural networks in a Bayesian deep
learning framework in order to predict input aleatoric
and model uncertainties [61].
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