Volkmar, Robin and Soal, Keith Ian and Govers, Yves and Böswald, Marc (2022) Experimental and operational modal analysis: Automated system identification for safety-critical applications. Mechanical Systems and Signal Processing (MSSP), 183 (109658). Elsevier. doi: 10.1016/j.ymssp.2022.109658. ISSN 0888-3270.
Full text not available from this repository.
Abstract
Safety-critical applications like the evaluation of aeroelastic stability during aircraft flight require modal parameters identified with high accuracy. Promising methods of automated modal identification exist. Nevertheless, these methods are not yet chosen for safety-critical applicaions. The reason is either insufficient accuracy of modal parameters or significant adaptions for each individual application. In this work, a new method is presented that not only enables fully automated modal analysis, but also learns an optimal way to analyze the data in a supervised manner. Based on the result of a single manual modal analysis, the self-learning method finds optimal parameters for the automated analysis. In an iterative process, new analysis parameters are chosen by Bayesian Optimization with a Gaussian Process as surrogate model and Expected Improvement as the acquisition function. With these parameters, the method can analyze additional datasets as accurately as a manual expert. The presented method is evaluated on ground vibration test data (i.e., experimental modal analysis) as well as flight vibration data (i.e., operational modal analysis) of an aircraft structure. In contrast to previous methods, the presented method can be easily used for various modal tests, since it can learn by itself to perform optimally with respect to a specific target function like for example the one provided in this work. Due to its robustness, the method is promising also for industrial test cases and safety-critical applications.
Item URL in elib: | https://elib.dlr.de/187833/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Experimental and operational modal analysis: Automated system identification for safety-critical applications | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | August 2022 | ||||||||||||||||||||
Journal or Publication Title: | Mechanical Systems and Signal Processing (MSSP) | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Volume: | 183 | ||||||||||||||||||||
DOI: | 10.1016/j.ymssp.2022.109658 | ||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||
ISSN: | 0888-3270 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Automated modal analysis, Parametric system identification, Bayesian Optimization, Supervised learning, Experimental modal analysis, Operational modal analysis | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Aeronautics | ||||||||||||||||||||
HGF - Program Themes: | Components and Systems | ||||||||||||||||||||
DLR - Research area: | Aeronautics | ||||||||||||||||||||
DLR - Program: | L CS - Components and Systems | ||||||||||||||||||||
DLR - Research theme (Project): | L - Aircraft Systems | ||||||||||||||||||||
Location: | Göttingen | ||||||||||||||||||||
Institutes and Institutions: | Institute of Aeroelasticity > Structural Dynamics and System Identification | ||||||||||||||||||||
Deposited By: | Volkmar, Robin | ||||||||||||||||||||
Deposited On: | 22 Aug 2022 15:02 | ||||||||||||||||||||
Last Modified: | 22 Aug 2022 15:02 |
Repository Staff Only: item control page