Schlegel, Anastasia (2022) Interpretable Deep Learning in Remote Sensing: Case-Based Object Recognition in SAR and Optical Imagery. Master's, Technische Universität Berlin.
Full text not available from this repository.
Item URL in elib: | https://elib.dlr.de/187823/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Document Type: | Thesis (Master's) | ||||||||
Title: | Interpretable Deep Learning in Remote Sensing: Case-Based Object Recognition in SAR and Optical Imagery | ||||||||
Authors: |
| ||||||||
Date: | December 2022 | ||||||||
Refereed publication: | Yes | ||||||||
Open Access: | No | ||||||||
Status: | Published | ||||||||
Keywords: | Deep Learning, SAR | ||||||||
Institution: | Technische Universität Berlin | ||||||||
Department: | Computer Vision and Remote Sensing | ||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||
HGF - Program: | Space | ||||||||
HGF - Program Themes: | Earth Observation | ||||||||
DLR - Research area: | Raumfahrt | ||||||||
DLR - Program: | R EO - Earth Observation | ||||||||
DLR - Research theme (Project): | R - Aircraft SAR | ||||||||
Location: | Oberpfaffenhofen | ||||||||
Institutes and Institutions: | Microwaves and Radar Institute > SAR Technology | ||||||||
Deposited By: | Schlegel, Anastasia | ||||||||
Deposited On: | 16 Aug 2022 07:14 | ||||||||
Last Modified: | 06 Dec 2022 18:43 |
Repository Staff Only: item control page