elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Accessibility | Contact | Deutsch
Fontsize: [-] Text [+]

Green synthesis route of Al2O3-SiO2 aerogels,possible alternative for the synthesis with propylene oxide

Heyer, Markus and Van Klaveren, Eva and Zimmermann, Lars and Vöpel, Pascal and Milow, Barbara (2022) Green synthesis route of Al2O3-SiO2 aerogels,possible alternative for the synthesis with propylene oxide. Sol Gel 2022 Lyon France, 2022-07-24 - 2022-07-29, Lyon, Frankreich.

[img] PDF
1MB

Abstract

Silica-alumina aerogels exhibit tremendous potential in high-temperature applications because of their excellent temperature stability at temperatures up to 1200°C. The synthesis of these aerogels is wellstudied using propylene oxide as a gelation initiator which is unfortunately toxic and carcinogenic. [1] Within this presentation we report on a new synthesis route which is developed to replace propylene oxide by non-toxic urea receiving silica-alumina gels. The gel bodies are dried under supercritical CO2 conditions to receive the aerogel. The route provides a significant advantage given their easy scalability. A systematic and conscious approach is followed to develop a green synthesis route for developing Al2O3-SiO2 aerogels. With the aim of improving the temperature stability of the Al2O3-SiO2 matrix, the molar ratios of urea, the type of solvent and the admixture of added metal oxides, such as ZrO2, are optimized. All aerogel variants are analyzed with respect to gelation, their density, porosity, internal surface area and thermal conductivity. Furthermore, the influence of heat treatment (25–1100°C) on the granular aerogels is investigated and additionally supported by X-ray powder diffraction, scanning electron microscopy and thermal analysis coupled with Fourier-Transform-Infrared (FT-IR) spectroscopy. In the contribution, all aspects concerning the importance of the careful examination on material parameters to ensure long term thermal stability will be presented. The results will be discussed and an outlook on potential applications will be demonstrated.

Item URL in elib:https://elib.dlr.de/187750/
Document Type:Conference or Workshop Item (Poster)
Title:Green synthesis route of Al2O3-SiO2 aerogels,possible alternative for the synthesis with propylene oxide
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Heyer, MarkusUNSPECIFIEDhttps://orcid.org/0000-0002-5180-0695UNSPECIFIED
Van Klaveren, EvaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Zimmermann, LarsUNSPECIFIEDhttps://orcid.org/0009-0009-9128-2392UNSPECIFIED
Vöpel, PascalUNSPECIFIEDhttps://orcid.org/0000-0001-8233-7261UNSPECIFIED
Milow, BarbaraUNSPECIFIEDhttps://orcid.org/0000-0002-6350-7728UNSPECIFIED
Date:25 July 2022
Refereed publication:Yes
Open Access:Yes
Gold Open Access:No
In SCOPUS:No
In ISI Web of Science:No
Status:Published
Keywords:Hybrid alumina-silica-based aerogel, high temperatur insulaton
Event Title:Sol Gel 2022 Lyon France
Event Location:Lyon, Frankreich
Event Type:international Conference
Event Start Date:24 July 2022
Event End Date:29 July 2022
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Transport
HGF - Program Themes:Road Transport
DLR - Research area:Transport
DLR - Program:V ST Straßenverkehr
DLR - Research theme (Project):V - FFAE - Fahrzeugkonzepte, Fahrzeugstruktur, Antriebsstrang und Energiemanagement, V - NGC Fahrzeugstruktur II (old)
Location: Köln-Porz
Institutes and Institutions:Institute of Materials Research > Aerogels and Aerogel Composites
Deposited By: Heyer, Markus
Deposited On:18 Aug 2022 08:21
Last Modified:24 Apr 2024 20:49

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
OpenAIRE Validator logo electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.