Staab, Jeroen and Schady, Arthur and Wolf, Kathrin and Behzadi, Sahar and Dallavalle, Marco and Weigand, Matthias and Lakes, Tobia and Taubenböck, Hannes (2022) 2000 land-use regressions for road traffic noise predictions – how sample selection affects extrapolation weights. In: 24th International Congress on Acoustics, ICA 2022, pp. 12-24. Proceedings of the 24th International Congress on Acoustics, 2022-10-24 - 2022-10-28, Gyeongju, Korea. ISSN 2226-7808.
PDF
1MB |
Official URL: https://ica2022korea.org/data/Proceedings_A04.pdf
Abstract
The awareness that noise exposure is critical for human health is growing around the globe, and land-use regressions (LURs) are becoming a popular tool for producing noise exposure maps. One important factor for noise emissions is road traffic. The propagation in this regard is determined by the spatial layout of road infrastructure and the surrounding environment, respectively. LURs use geostatistical models and allow to extrapolate microphone measurements. In this study, we investigated whether models are prone to sampling artifacts. We used yearly averaged Lden simulations, compliant to the European noise directive 2002/49/EG, as input for 2000 virtual field campaigns. We permuted different sampling schemes (random, systematic, stratified) and sizes (n = 50, 100, 200, 500 to 1000) 100 times. The overall model performances varied substantially between 0.61 – 0.95 for R², 1.94 – 7.46 dB(A) for mean absolute error and 2.47 – 10.03 dB(A) for root mean squared error. Comparing the eventual model terms using variance analyses (ANOVA), we found significant differences between the sampling schemes for traffic information and land cover (e.g. vegetated surfaces) features. Simultaneously, less than half of the LURs’ weights differed significantly depending on the sampling size. Thus, our experiments give an in-depth view on the mechanics of LUR and their sensitivity with respect to sampled training data.
Item URL in elib: | https://elib.dlr.de/187661/ | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||||||||||||||
Title: | 2000 land-use regressions for road traffic noise predictions – how sample selection affects extrapolation weights | ||||||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||||||||||||||||||
Journal or Publication Title: | 24th International Congress on Acoustics, ICA 2022 | ||||||||||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||||||||||||||
Page Range: | pp. 12-24 | ||||||||||||||||||||||||||||||||||||
ISSN: | 2226-7808 | ||||||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||||||
Keywords: | Traffic noise, Exposure Assessment, Sensitivity Analysis | ||||||||||||||||||||||||||||||||||||
Event Title: | Proceedings of the 24th International Congress on Acoustics | ||||||||||||||||||||||||||||||||||||
Event Location: | Gyeongju, Korea | ||||||||||||||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||||||||||||||
Event Start Date: | 24 October 2022 | ||||||||||||||||||||||||||||||||||||
Event End Date: | 28 October 2022 | ||||||||||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research, R - Geoscientific remote sensing and GIS methods, V - Digitaler Atlas 2.0 | ||||||||||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security Institute of Atmospheric Physics > Transport Meteorology | ||||||||||||||||||||||||||||||||||||
Deposited By: | Staab, Jeroen | ||||||||||||||||||||||||||||||||||||
Deposited On: | 22 Nov 2022 20:07 | ||||||||||||||||||||||||||||||||||||
Last Modified: | 31 Oct 2024 09:01 |
Repository Staff Only: item control page