elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Lidar-Based Gust Load Alleviation - Results Obtained on the Clean Sky 2 Load Alleviation Benchmark

Fezans, Nicolas und Wallace, Christian und Kiehn, Daniel und Cavaliere, Davide und Vrancken, Patrick (2022) Lidar-Based Gust Load Alleviation - Results Obtained on the Clean Sky 2 Load Alleviation Benchmark. In: 19th International Forum on Aeroelasticity and Structural Dynamics, IFASD 2022. IFASD 2022, 2022-06-13 - 2022-06-17, Madrid, Spanien. ISBN 978-840942353-8.

[img] PDF - Nur DLR-intern zugänglich
1MB

Kurzfassung

This paper presents a design methodology for lidar-based load alleviation functions and the results obtained for an industrial modern jet aircraft configuration. At the heart of the methodology is a multi-channel structured H-inifinity preview-control synthesis in discrete time. The load alleviation function works in a pure feedforward manner, which ensures that the handling qualities are not modified. The design methodology contains a couple of iterative loops permitting the refinement of the design and the fine-tuning the tradeoff between all control objectives. At the end, the objective function contained forty objectives, resulting from combining ten performance channels with four different local models (different flight conditions and mass cases). The complete lidar-based load alleviation system was evaluated using a multi-rate hybrid simulation environment with the load alleviation controller running at 80 Hz and including the lidar sensor simulation and an online gust/wind estimation algorithm. The obtained results are very promising: the objective of 10% wing bending moment reduction was achieved along the entire wing except at the wing tip while keeping the loads on all other stations within the design loads (often improving them as well). The controller was optimized to achieve this goal with the smallest control deflections and deflection rates possible.

elib-URL des Eintrags:https://elib.dlr.de/187462/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Lidar-Based Gust Load Alleviation - Results Obtained on the Clean Sky 2 Load Alleviation Benchmark
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Fezans, NicolasNicolas.Fezans (at) dlr.dehttps://orcid.org/0000-0003-4351-3474NICHT SPEZIFIZIERT
Wallace, ChristianChristian.Wallace (at) dlr.dehttps://orcid.org/0000-0003-3400-5451NICHT SPEZIFIZIERT
Kiehn, DanielDaniel.Kiehn (at) dlr.dehttps://orcid.org/0000-0001-7383-0740148660205
Cavaliere, DavideDavide.Cavaliere (at) dlr.dehttps://orcid.org/0009-0001-5501-2370148660207
Vrancken, PatrickDLR, IPAhttps://orcid.org/0000-0003-2364-5576NICHT SPEZIFIZIERT
Datum:15 Juni 2022
Erschienen in:19th International Forum on Aeroelasticity and Structural Dynamics, IFASD 2022
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
ISBN:978-840942353-8
Status:veröffentlicht
Stichwörter:Lidar; Gust load alleviation; Robus Control; Preview Control
Veranstaltungstitel:IFASD 2022
Veranstaltungsort:Madrid, Spanien
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:13 Juni 2022
Veranstaltungsende:17 Juni 2022
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):L - keine Zuordnung
Standort: Braunschweig , Oberpfaffenhofen
Institute & Einrichtungen:Institut für Flugsystemtechnik > Flugdynamik und Simulation
Institut für Physik der Atmosphäre > Lidar
Institut für Flugsystemtechnik
Hinterlegt von: Fezans, Nicolas
Hinterlegt am:07 Sep 2022 16:46
Letzte Änderung:24 Apr 2024 20:48

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.