Raumer, Hans-Georg und Haxter, Stefan und Berkefeld, Tobias und Spehr, Carsten (2022) Determining Flow Propagation Direction from In-Flight Array Surface Pressure Fluctuation Data. AIAA Journal, 60 (10), Seiten 1-12. American Institute of Aeronautics and Astronautics (AIAA). doi: 10.2514/1.J061711. ISSN 0001-1452.
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://doi.org/10.2514/1.J061711
Kurzfassung
When characterizing spatial coherence properties of turbulent boundary-layer surface pressure fluctuation data, it is important to determine the local flow direction first.Without flow direction, it is very easy to introduce errors due to misalignment between sensors and the flow. For cases with two-dimensional microphone distributions, a method of determining flow direction from the orientation of the coherent pressure in spatial domain was introduced recently. If the data are analyzed in wavenumber domain, flow information can be obtained by the position and orientation of the convective ridge. In this publication, flow directions determined from a revised spatial domain approach and from two wavenumber domain approaches are considered. It was found that the result from the spatial domain approach and the result from the orientation of the convective ridge are similar for most frequencies, while the result based on the position of the convective ridge differs in the lower frequency range. Tilted convection of coherent structures in the turbulent boundary layer is discussed as a possible cause of these observations. A modification of the analytical model for surface pressure coherence is derived that takes the findings into account.
elib-URL des Eintrags: | https://elib.dlr.de/187409/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Zusätzliche Informationen: | eISSN: 1533-385X, Published Online:11 Jul 2022 | ||||||||||||||||||||
Titel: | Determining Flow Propagation Direction from In-Flight Array Surface Pressure Fluctuation Data | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 11 Juli 2022 | ||||||||||||||||||||
Erschienen in: | AIAA Journal | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 60 | ||||||||||||||||||||
DOI: | 10.2514/1.J061711 | ||||||||||||||||||||
Seitenbereich: | Seiten 1-12 | ||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||
Verlag: | American Institute of Aeronautics and Astronautics (AIAA) | ||||||||||||||||||||
ISSN: | 0001-1452 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Flow direction, Turbulent boundary layer pressure fluctuation, coherence, wavenumber spectrum, convection direction | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||
HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Virtuelles Flugzeug und Validierung | ||||||||||||||||||||
Standort: | Göttingen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > Experimentelle Verfahren, GO | ||||||||||||||||||||
Hinterlegt von: | Micknaus, Ilka | ||||||||||||||||||||
Hinterlegt am: | 13 Dez 2022 10:01 | ||||||||||||||||||||
Letzte Änderung: | 13 Dez 2022 10:01 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags