elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Sentinel-1-based water and flood mapping: benchmarking convolutional neural networks against an operational rule-based processing chain

Helleis, Max and Wieland, Marc and Krullikowski, Christian and Martinis, Sandro and Plank, Simon Manuel (2022) Sentinel-1-based water and flood mapping: benchmarking convolutional neural networks against an operational rule-based processing chain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, pp. 2023-2036. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2022.3152127. ISSN 1939-1404.

[img] PDF - Published version
8MB

Item URL in elib:https://elib.dlr.de/187304/
Document Type:Article
Title:Sentinel-1-based water and flood mapping: benchmarking convolutional neural networks against an operational rule-based processing chain
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Helleis, MaxUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Wieland, MarcUNSPECIFIEDhttps://orcid.org/0000-0002-1155-723XUNSPECIFIED
Krullikowski, ChristianUNSPECIFIEDhttps://orcid.org/0000-0001-8717-692XUNSPECIFIED
Martinis, SandroUNSPECIFIEDhttps://orcid.org/0000-0002-6400-361XUNSPECIFIED
Plank, Simon ManuelUNSPECIFIEDhttps://orcid.org/0000-0002-5793-052XUNSPECIFIED
Date:2022
Journal or Publication Title:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Refereed publication:Yes
Open Access:Yes
Gold Open Access:Yes
In SCOPUS:Yes
In ISI Web of Science:Yes
Volume:15
DOI:10.1109/JSTARS.2022.3152127
Page Range:pp. 2023-2036
Publisher:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1939-1404
Status:Published
Keywords:Sentinel-1, machine learning, benchmark
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Earth Observation
DLR - Research theme (Project):R - Remote Sensing and Geo Research
Location: Oberpfaffenhofen
Institutes and Institutions:German Remote Sensing Data Center > Geo Risks and Civil Security
Deposited By: Wieland, Dr Marc
Deposited On:12 Jul 2022 11:31
Last Modified:19 Oct 2023 14:20

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.