Ulmschneider, Markus und Gentner, Christian und Dammann, Armin (2022) Learning-Based Fusion of Multipath Assisted Positioning and Fingerprinting. In: 35th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS+ 2022, Seiten 1721-1728. Proceedings of 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022), 2022-09-19 - 2022-09-23, Denver, USA. doi: 10.33012/2022.18498. ISBN 978-171387136-1.
PDF
549kB |
Kurzfassung
In multipath assisted positioning, multipath components (MPCs) are regarded as line-of-sight (LoS) signals from virtual transmitters. The locations of the physical and the virtual transmitters can be estimated jointly with the user position using simultaneous localization and mapping (SLAM). We have previously introduced such an approach called cooperative Channel-SLAM, where multiple users cooperatively estimate the locations of physical and virtual transmitters. Such schemes typically suffer from a high computational complexity due to expensive signal processing, though. Within this paper, we propose a novel approach that combines multipath assisted positioning with fingerprinting. In the first stage, multiple users estimate their own locations with cooperative Channel-SLAM. With the channel estimates and the estimated user positions from cooperative Channel-SLAM, a deep neural network (DNN) is trained. In the second stage, users can localize themselves making use of the DNN. In our novel approach, the positioning error is in the same order of magnitude as for cooperative Channel-SLAM, while the computational complexity is reduced drastically.
elib-URL des Eintrags: | https://elib.dlr.de/186994/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Learning-Based Fusion of Multipath Assisted Positioning and Fingerprinting | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2022 | ||||||||||||||||
Erschienen in: | 35th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS+ 2022 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.33012/2022.18498 | ||||||||||||||||
Seitenbereich: | Seiten 1721-1728 | ||||||||||||||||
ISBN: | 978-171387136-1 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Channel-SLAM, cooperative positioning, deep learning, fingerprinting, localization | ||||||||||||||||
Veranstaltungstitel: | Proceedings of 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022) | ||||||||||||||||
Veranstaltungsort: | Denver, USA | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 19 September 2022 | ||||||||||||||||
Veranstaltungsende: | 23 September 2022 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Kommunikation, Navigation, Quantentechnologien | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R KNQ - Kommunikation, Navigation, Quantentechnologie | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt Navigation 4.0 | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nachrichtensysteme | ||||||||||||||||
Hinterlegt von: | Ulmschneider, Markus | ||||||||||||||||
Hinterlegt am: | 07 Jul 2022 10:34 | ||||||||||||||||
Letzte Änderung: | 12 Jul 2024 09:14 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags