elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Georeferencing Urban Nighttime Lights Imagery Using Street Network Maps

Schwind, Peter und Storch, Tobias (2022) Georeferencing Urban Nighttime Lights Imagery Using Street Network Maps. Remote Sensing, 14 (11), Seiten 1-18. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs14112671. ISSN 2072-4292.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
115MB

Offizielle URL: https://www.mdpi.com/2072-4292/14/11/2671

Kurzfassung

Astronaut photography acquired from the International Space Station presently is the only available option for free global high-resolution nighttime light (NTL) imagery. Unfortunately, these data are not georeferenced, meaning they cannot easily be used for many remote sensing applications such as change detection or fusion. Georeferencing such NTL data manually, for example, by finding tie points, is difficult due to the strongly differing appearance of any potential references. Therefore, realizing an automatic method for georeferencing NTL imagery is preferable. In this article, such an automatic processing chain for the georeferencing of NTL imagery is presented. The novel approach works by simulating reference NTL images from vector-based street network maps and finding tie points between these references and the NTL imagery. To test this approach, here, publicly available open street maps are used. The tie points identified in the reference and NTL imagery are then used for rectification and thereby for georeferencing. The presented processing chain is tested using nine different astronaut photographs of urban areas, illustrating the strengths and weaknesses of the algorithm. To evaluate the geometric accuracy, the photography is finally matched manually against an independent reference. The results of this evaluation depict that all nine astronaut photographs are georeferenced with accuracies between 2.03 px and 6.70 px. This analysis demonstrates that an automatic georeferencing of high-resolution urban NTL imagery is feasible even with limited attitude and orbit determination (AOD). Furthermore, especially for future spaceborne NTL missions with precise AOD, the algorithm’s performance will increase and could also be used for quality-control purposes.

elib-URL des Eintrags:https://elib.dlr.de/186716/
Dokumentart:Zeitschriftenbeitrag
Titel:Georeferencing Urban Nighttime Lights Imagery Using Street Network Maps
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schwind, PeterPeter.Schwind (at) dlr.dehttps://orcid.org/0000-0002-0498-767XNICHT SPEZIFIZIERT
Storch, TobiasTobias.Storch (at) dlr.dehttps://orcid.org/0000-0001-8853-8996NICHT SPEZIFIZIERT
Datum:2 Juni 2022
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:14
DOI:10.3390/rs14112671
Seitenbereich:Seiten 1-18
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:nighttime remote sensing; NTL; street network map; georeferencing; image matching
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Optische Fernerkundung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Schwind, Peter
Hinterlegt am:14 Jun 2022 13:58
Letzte Änderung:14 Mär 2023 17:55

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.