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Abstract: Astronaut photography acquired from the International Space Station presently is the only
available option for free global high-resolution nighttime light (NTL) imagery. Unfortunately, these
data are not georeferenced, meaning they cannot easily be used for many remote sensing applications
such as change detection or fusion. Georeferencing such NTL data manually, for example, by
finding tie points, is difficult due to the strongly differing appearance of any potential references.
Therefore, realizing an automatic method for georeferencing NTL imagery is preferable. In this
article, such an automatic processing chain for the georeferencing of NTL imagery is presented. The
novel approach works by simulating reference NTL images from vector-based street network maps
and finding tie points between these references and the NTL imagery. To test this approach, here,
publicly available open street maps are used. The tie points identified in the reference and NTL
imagery are then used for rectification and thereby for georeferencing. The presented processing
chain is tested using nine different astronaut photographs of urban areas, illustrating the strengths
and weaknesses of the algorithm. To evaluate the geometric accuracy, the photography is finally
matched manually against an independent reference. The results of this evaluation depict that all
nine astronaut photographs are georeferenced with accuracies between 2.03 px and 6.70 px. This
analysis demonstrates that an automatic georeferencing of high-resolution urban NTL imagery is
feasible even with limited attitude and orbit determination (AOD). Furthermore, especially for future
spaceborne NTL missions with precise AOD, the algorithm’s performance will increase and could
also be used for quality-control purposes.

Keywords: nighttime remote sensing; NTL; street network map; georeferencing; image matching

1. Introduction

Georeferenced Earth imagery acquired at daylight is widely available nowadays, even
in free and open forms from public missions such as Landsat or Sentinel-2 [1]. For nighttime
light (NTL) imagery, however, the variety of data is much lower. For low-resolution needs,
the Day/Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) has
been providing NTL data since 2011 with a resolution of 750 m [2] with a daily global
revisit and pan-chromatic band. For high-resolution needs, there are presently no publicly
available global NTL data. The only available option in this case is the imagery acquired
manually and sporadically by astronauts on the International Space Station (ISS), which
is available on the Gateway to astronaut photography of Earth [3,4]. An example of such
an astronaut photograph is shown in Figure 1. This image of Paris, France, for example,
was acquired in April 2015 using a Nikon D4 electronic still camera with a focal length of
400 mm. From the horizontal sensor size of 36.0 mm with 4928 px, approximate altitude of
394 km and the tilt angle of 17◦, provided for this image, a ground sampling distance of
~7.6 m is derived. This collection of high-resolution data acquired at nighttime is unique
and enables completely novel applications. As almost all light sources at night are man-
made, their changes over time, in particular in urban areas, provide a good estimate of
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human impact and light pollution. The extent of night-time illumination provides valuable
information on energy consumption for artificial light, urbanization, electricity access,
socio-economy, hazards, risks, disasters, monitoring of conflicts, natural properties of
the atmosphere and surface, and biological risks and opportunities: for example, human
health, well-being, and influences on animals and plants [5]. A prerequisite for any of
these studies, however, is a high geolocation accuracy of the NTL data. Unfortunately, due
to the manual acquisition of these astronaut photographs, the images do not offer much
geocoding information. Typically, information is available on time, position, camera model,
sensor format and focal length, but not, in particular, on the precise attitude. The citizens
science project Cities at Night and the associated project Lost at Night have been started to
tag, locate and geocode the astronaut photographs [6]. Such an approximate geocoding
is already useful for several use cases. For many applications, however, such as change
detection over time or fusion with other data sources, a more accurate georeferencing
is required.

Figure 1. Paris at Night acquired by an astronaut from the ISS. (NASA Photo ID ISS043-E-93480).

The geolocation of satellite imagery acquired at daylight is often improved by find-
ing tie points based on image matching in reference daylight images and rectifying the
images based on these matches [7]. For NTL images, such an approach is not viable, as
currently, no global high-resolution reference is available for nocturnal images. Depending
on the scene content, a manual operator is able to use daytime imagery to find point
correspondences with NTL images. Something similar was performed with low-resolution
DNB data of VIIRS [8], where features such as lights from oil platforms, power plants,
gas flares, volcanoes, and bridges were used to monitor the geolocation accuracy. For an
automatic method to be used in an operational processing chain, finding matches between
daytime and nighttime images is a highly complex task due to the heterogeneity of the
image contents.

Especially when focusing on NTL imagery with urban content, it is evident that the
main features visible are illuminated streets, see, for example, Figure 1. Considering the
high resemblance to street network maps, it almost suggests itself to use a georeferenced
street network map as a matching reference for these urban NTL images. To evaluate if
such an approach is really viable, in this article, we used a street network extracted from
OpenStreetMap (OSM) [9] in February 2022 to perform an automatic feature matching
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followed by image rectification. Of course, apart from OSM, any comparable street database
is also suitable for the proposed methodology. The main advantages of OSM data are the
world-wide coverage, free and open availability, and a wide range of supporting tools and
libraries. However, the fact that OSM is based on crowdsourcing by volunteers could be
regarded as a qualitative disadvantage. There is no general statement on the accuracy of
OSM data, but some accuracy studies have been conducted at least for local regions. For
example, in [10] an RMSE (Root Mean Squared Error) of 4.35 m was measured in West
Lafayette, USA, and in [11], an average accuracy of 5.83 m was measured in selected areas
of London, UK. This order of magnitude should be sufficient for the used NTL data, with
a spatial resolution of 6.4 m or coarser. Nevertheless, it makes sense to double-check the
achieved absolute accuracies using an independent reference.

The details of the proposed algorithm are described in Section 2. Next, the geometric
accuracy of this algorithm on nine selected NTL images is evaluated against an independent
reference in Section 3, and finally, the performance of the proposed method is analyzed in
Section 4.

2. Methodology

The proposed algorithm is straightforward (see Figure 2): The main features visible in
urban NTL imagery from space are illuminated roads. To rectify such images, the street net-
work of the area of interest is extracted from OSM and used as a reference. As the position
of the NTL images is often not known, this is performed for up to 49 overlapping tiles in
the area of ±2◦ with respect to the known nadir point of the ISS at the time of acquisition.
These simulated reference NTL images are then matched against the NTL photos, rotated
in 40 steps, using the BRISK feature detector. This results in 40 × 49 = 1960 combinations
for references and rotations. Based on the identified keypoint correspondences, the NTL
photos are finally rectified onto the coordinate system of the reference NTL images.

The four main processing steps are described in more detail in the following subsections:

1. Reference image generation;
2. BRISK keypoint extraction;
3. Keypoint matching and outlier removal;
4. Original imagery rectification.

2.1. Reference Image Generation

The simulated reference NTL images from OSM are extracted and rasterized automati-
cally using the Python package OSMnx [12].

First, the approximate resolution of the NTL images is calculated using the sensor size,
focal length, and ISS altitude. When available on the Gateway to astronaut photography of
Earth, the camera tilt, based on the coarse location of the ISS and center of the NTL images,
is also taken into account for this calculation. Even if this is not available, the approximated
resolution assuming a camera tilt of 0◦ is usually sufficiently accurate for further matching.

Next, in an Area-Of-Interest (AOI) of ±2◦, namely, ~450 km × 450 km, around the
nadir point, 1◦ × 1◦ tiles with an overlap of 0.5◦ × 0.5◦ are determined, as the spatial
extent of the NTL images is typically smaller than 0.5◦ × 0.5◦. If the coarse center point is
provided for the NTL photo, only the four tiles containing that point need to be considered;
otherwise, all 49 tiles are extracted using the estimated resolution. This tiling approach
over such a large AOI is necessary, as the coarse center point of the NTL image is unknown
for many of the NTL scenes. Furthermore, the tiling allows for improved computational
parallelization, the consideration of even larger AOI if necessary, and more robust image
matching because of there being fewer outliers. For a nighttime light satellite imagery
including more accurate geolocation information, it would be possible to work with only
one reference tile.
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Figure 2. Proposed matching and rectification algorithm for NTL imagery.

The OSMnx package supports extensive filtering of the extracted street networks. For
example, roads which are tagged as footpaths, abandoned or underground are excluded
during the extraction, as only sufficiently illuminated roads are of interest for the following
matching step. It is also possible to distinguish bigger roads such as highways from the
smaller roads using the OSM tags motorway and trunk. For these roads, a width of 20 m
is assumed, while all other roads are plotted with a width of 10 m. The assumption is
motivated as the average street width is 11 m for 30 globally distributed cities [13], in
particular 10.8 m for Paris and considering 10% bigger and 90% smaller roads.

An example of a street network extracted and rasterized using this approach is illus-
trated for Paris in Figure 3. In Figure 4, a subset of a reference NTL image is displayed
together with the original NTL imagery. Here, the similarity of the created reference to
the original is clearly observed. Note that the rasterized roads are displayed in yellow
to highlight the visual similarity to urban night images. For the following processing
steps, the color is not considered, and only one channel is used for matching, as the BRISK
detector only works with monochromatic values, not with color information. Furthermore,
considering only monochromatic values results in a wider applicable approach.
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Figure 3. Reference NTL image of Paris extracted from OpenStreetMap.

Figure 4. Subset of georeferenced NTL image of Paris overlaid onto the reference NTL image.
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2.2. BRISK Keypoint Extraction

For the keypoint extraction, Binary Robust Invariant Scalable Keypoints (BRISK) [14]
is used. This keypoint detector is notable for its speed and robustness. In [15], an Image
Registration Processing Chain for remote sensing daytime images based on BRISK was pre-
sented. There, the high accuracy and repeatability of BRISK in remote sensing was proven,
while the runtime was often significantly faster compared to other approaches. BRISK
was chosen because the BRISK descriptor is well suited for the presented methodology:
The BRISK descriptor only contains binary information, meaning it stores only whether
the intensity of each location in the descriptor area is higher or lower than that of another
location. Considering the BRISK descriptor does not depend on the magnitude of intensity
differences, the intensities of the street network in the synthetic reference images do not
have to be fine-tuned to match the NTL images, simplifying the reference image generation
considerably. Of course, other keypoint detectors (e.g., SIFT [16], SURF [17], ORB [18])
might be considered for this processing step.

In theory, the orientations of the images are not needed, as the original BRISK algorithm
is supposed to be rotation invariant. In practice, however, it is observed that matching
results improve significantly if the rotation invariance in the BRISK algorithm is deactivated.
Instead, to achieve rotation invariance, several orientations of the original NTL imagery are
considered because its orientation is unknown. To be more precise, the image is rotated by
360◦ in 40 steps. The orientation which resulted in the most matches was finally used for
the following processing steps. The number of sampling steps was chosen since it doubles
the number of the 20 sampling locations on the outermost ring of the BRISK descriptor,
see [14].

While this approach of image rotation is significantly slower than using the built-in
rotation invariance of BRISK, it resulted in much more matches overall. Of course, if the
orientation of the images would be known, the entire method should be executed exclud-
ing any rotation invariance, improving the runtime significantly. Since the approximate
resolution of the NTL photos is known, the scale invariance feature of BRISK is deactivated,
too, to further improve the matching results.

As was explained in Section 2.1, multiple reference tiles are extracted for each NTL
image to enable complete automation of the process. A drawback of this method is the
computational effort for the keypoint extraction of up to 49 tiles. For a modified and even
more operational processing chain, however, it would be possible to generate a database of
keypoints extracted from the entire area of interest, maybe even world-wide, in advance.
Any future NTL image would then be matched quickly against a subsection of that database.
The advantage, however, would be a compact database of reference keypoints compared to
an image reference database and rapid georeferencing of all future NTL images matched
against this database.

As BRISK works with monochromatic images, only the red band of the NTL images
was used for keypoint extraction. This band was chosen, as it typically has the highest
contrast out of the available bands. For this work, the keypoint extraction was also tested
using the two other bands, as well as the mean and the maximum value of all the available
bands. In all cases, no significant differences compared to simply using the red band
was observed.

2.3. Keypoint Matching and Outlier Removal

To identify correspondences for the extracted BRISK keypoints, the locality-sensitive
hashing (LSH) algorithm in the publicly available Fast Library for Approximate Nearest
Neighbors (FLANN) is used [19]. Using LSH, for each keypoint in the NTL image, the
two matches in the reference image with the smallest Hamming distance are determined.
Only if the ratio of the Hamming distances between these two matching candidates is
below 0.7, a match is accepted. The ratio of 0.7 typically eliminates more than 95% of the
incorrect matches and less than 10% of the correct matches [16]. Finally, outliers within
the matched keypoints are filtered out using RANSAC (RANdom SAmple Consensus).
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RANSAC iteratively fits an affine transformation to a subset of three randomly selected
matches. Each iteration, the determined fit is applied to all the remaining matches, and
their deviation from the actual measured keypoint locations is determined. All matches
with a displacement lower than the threshold of 15 px are assumed to be matching inliers.
The fitted transformation with most inliers is finally used to remove the matching outliers.
For more details on RANSAC, see [20]. The entire matching and outlier removal procedure
described above is repeated for all of the 49 reference tiles and 40 rotations. The combination
with most matches is then used for further processing.

While the used matching procedure is strongly based on the Image Registration
Processing Chain in [15], there is one notable difference. Instead of a sensor model-based
RANSAC implementation for the outlier removal, an affine transformation-based RANSAC
implementation is used here. This is necessary, as a highly accurate sensor model for the
original NTL imagery is not available for the camera models.

Affine transformations are estimable using only three tie points (six dimensions) but
already account for the major transformations, namely, translation (two dimensions) and
rotation (one dimension), as the attitude is unknown, as well as tilting (one dimension) and
scale (two dimensions), as the orbit and sensor geometry are not precisely known. However,
some remaining minor transformations are accounted for by the threshold of 15 px. These
are especially the precision of the matching (at most 2 px), the differences in the geolocation
within the reference NTL image (at most 15 m; 2 px), the geometric distortions in the sensor
within the original NTL imagery (at most 2 px), and the not considered changes in terrain
elevation within the images (e.g., change of 75 m viewed at 400 km and 40◦ results in
differences in the geolocation of at most 62.9 m; 9 px).

An example for BRISK matches obtained for a NTL photo and a simulated reference
NTL image is illustrated in Figure 5. The matching results for all 1960 combinations
of tiles and rotations are plotted in Figure 6. It is observed that combinations which
are not matched successfully rarely have more than five remaining matches after the
outlier removal. Apart from the low number of matches, the parameters of the affine
model determined by RANSAC might also be used to decide whether a tile was matched
successfully at a given rotation or not, as these are often nonsensical for mismatched tiles.
For the datasets used in this article, it was, however, sufficient to simply proceed with the
combination of tile and rotation resulting in the most matches. For the Paris dataset, that
was the tile with the lower left coordinates at 48.7◦ Latitude and 1.5◦ Longitude, where
770 matches were obtained.

2.4. Original Imagery Rectification

Based on the robustly selected consistent tie points based on affine transformations,
polynomial transformations are estimable using six tie points (12 dimensions), which allow
us to account also for some minor transformations compared to affine transformations:
for example, geometric distortions in the sensor and the not considered changes in terrain
elevation within the image. Rectifying the image is straightforward. First, a quadratic
polynomial (Equations (1) and (2)) is fitted to the keypoint matches:

rowt = ar0 + ar1 · col + ar2 · row + ar3 · col2 + ar4 · row2 + ar5 · col · row (1)

colt = ac0 + ac1 · col + ac2 · row + ac3 · col2 + ac4 · row2 + ac5 · col · row (2)

Here, row and col are the keypoint coordinates in the reference and NTL image,
respectively, while arn and acn are the coefficients determined by the fit. Next, the resulting
coefficients are used to rectify the NTL image onto the reference image. It should be
mentioned that a polynomial transformation is used here because only limited information
about the sensor model is available. With a more detailed sensor model, orbit, and attitude
information, a more sophisticated rectification approach, optionally including a digital
elevation model, is possible. Such a more rigorous approach will further improve the
overall geolocation accuracy.
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Figure 5. Total of 770 filtered matches obtained for Paris. The reference image generated from OSM
is shown on the left, while the NTL image is shown on the right.
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Figure 6. Number of filtered matches for each combination of reference tile and rotation for Paris. The
maximum number of matches (770) was found for the reference tile with the lower left coordinates at
48.7◦ Latitude and 1.5◦ Longitude and a rotation difference of 270◦.
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3. Evaluation

To evaluate the presented methodology, eight Sentinel-2 Level 1C products were
selected as ground-truth, and the geometric accuracy of the processed NTL images was
compared against these references. The details of the evaluation approach, the used datasets
and the achieved results are presented hereafter.

3.1. Evaluation Approach

To determine the geometric accuracy of the images rectified using the presented
method, it was decided to use Sentinel-2 images as an independent ground-truth. That
way, not just the relative accuracy between OSM and the NTL images is evaluated but,
instead, the absolute accuracy of the entire method. As Sentinel-2 has a reported absolute
accuracy of ~11 m [21] (corresponding to 0.6–2.4 px for the considered NTL images), it is a
reasonable choice as an absolute ground-truth for this evaluation.

An overview of the evaluation methodology is shown in Figure 7. First, the selected
NTL images were matched manually against the corresponding Sentinel-2 images. Here,
for each pair of NTL and Sentinel-2 images, ten evenly distributed ground control points
(GCPs) were matched; see Figure 8 for an example.

Next, the NTL images were matched and rectified as described in Section 2. The
point correspondences located in the NTL images were rectified using the polynomial
transformation, and the resulting coordinates were compared to the corresponding GCPs
coordinates, see Figure 9 for an example for visual inspection.

NTL
ImageOpenStreetMap Sentinel-2

Image

Matching (FLAAN) Matching (manual)

Filtered
Matches

GCPs

Rectification

Rectified
NTL Image

Rectified
GCPs

Accuracy
Determination

Figure 7. Evaluation approach used to determine the absolute accuracy of the georeferenced NTL images.

Figure 8. Manually selected GCPs for Paris, to be used for the evaluation of the absolute geometric
accuracy. The NTL image is shown on the left, and the Sentinel-2 reference is shown on the right.



Remote Sens. 2022, 14, 2671 10 of 18

Figure 9. Subsection of georeferenced NTL image of Paris (color image) overlaid onto reference
Sentinel-2 image (greyscale).

3.2. Datasets

Nine exemplary datasets were selected to test the presented rectification methodology,
see Table 1. The focus was laid on urban centers, featuring large, well-illuminated street
networks. Datasets from different cultural areas with different evolution of urban areas
were used. In addition to that, the chosen NTL images were acquired with different models,
different focal lengths, and different tilt angles to test the robustness of the approach and
over a large range of eleven years to test if matching less up-to-date NTL images against a
more up-to-date street database would pose challenges.

Paris The Paris dataset (see Figure 1) is regarded as the optimal dataset for this method-
ology. With a spatial resolution of ~7.6 m, a visual interpretation indicates a
well-defined and easily recognizable street network.

Berlin Even though the Berlin dataset only has a slightly lower spatial resolution of
~8.7 m than the Paris dataset, it features a much more blurry street network,
which is expected to make it more difficult to identify point matches with the
reference NTL image. An interesting aspect of this dataset is the fact that, for
historic reasons, two different types of street lamps are used in Berlin. In West
Berlin, fluorescent and mercury vapor lamps are emitting white light. The lamps
in East Berlin, on the other hand, mostly use sodium vapor, resulting in light
with a yellow hue, see [22].

Milan The two datasets selected from Milan offer the opportunity to study the influence
of the lighting type on the presented methodology. The first image, acquired in
March 2012, features street lighting almost exclusively based on sodium vapor
lamps. The second image from April 2015 was acquired after LED lighting was
installed in the city center, which features a different radiance in the used NTL
imagery. For more details on the change in radiance for these datasets, see [23].

Vienna The dataset from Vienna features a higher tilt angle of 26◦. This not only results
in a slightly lower spatial resolution but also means that the direct view of many
of the roads might be obstructed.

Rome The dataset from Rome features a mix of organically grown networks and grid
plans. With a smaller tilt angle of 15◦, it shows well-recognizable streets.

Harbin The dataset from Harbin, acquired in 2021, is one of the most up-to-date datasets.
It features a mostly grid plan based street network, typical for modern Asian
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cities. While this regular pattern might be challenging for the used matching
approach, the image features very well-recognizable roads and is expected to be
well-suited for keypoint detection.

Algiers The dataset from Algiers features an organically grown street network shaped by
the mountainous terrain. For this scene, no tilt angle is provided, but according
to the provided ISS position and the manually determined center of the image,
it is determined to be be close to nadir view. In some parts of the image, the
view is obstructed by clouds, which might impair the matching process.

Las Vegas The dataset from Las Vegas is one of the less up-to-date datasets and is selected
to test the limitations of the proposed approach. It is acquired with a shorter
focal length of 180 mm and therefore features an estimated spatial resolution of
~26.6 m, which means only major roads are distinguished. In addition to that,
the regular street pattern poses an additional challenge for the matching, as it
may result in very similar looking descriptors for the selected keypoints.

It is noted that the datasets were hand-picked, selecting images featuring somehow
well-recognizable street networks, suitable for matching with a street map. Not all of the
astronaut NTL photos available are suitable for the presented method, either because they
are too blurry, e.g., due to the movement of clouds or astronauts during acquisition, or
because they do not feature well-illuminated street networks, e.g., due to limited urban
structures or coarse spatial resolution.

3.3. Results

For all datasets, the number of matches returned by BRISK, before and after outlier
filtering using RANSAC, are shown in Table 2 for the combination of reference tile and
rotation with a maximal number of filtered matches. In addition to that, the deviations in the
remaining matches to the fitted affine transformation are shown together with a plot of the
minimum, maximum, mean, and standard deviations of these matches. The minimum and
maximum deviations are just included in the table for completeness and are not meaningful
in this case. The minimum of 0 px in all cases is a result of the mode of operation of
RANSAC, as three of the matches are used to determine the affine transformation itself.
The maximum of 15 px is predetermined by the used RANSAC threshold.

The matches remaining after outlier filtering are illustrated in Figures 5 and 10. It is
noted that the reference images shown here were reduced to the areas containing matches
and rescaled for better visualization. The actual reference images are much bigger and have
a spatial resolution similar to the NTL images. A visual inspection of the matches after
outlier removal indicates that RANSAC worked without challenges in all tested datasets as
no clear mismatches are observable.

The number of remaining matches after RANSAC varies a lot, ranging from 770 in
Paris to 11 in Milan #2. Apart from the dataset from Paris, the datasets from Vienna,
Rome and Algiers feature most of the matches. It is noticeable that these are all datasets
containing relatively irregular street networks. In Figure 10b,e,g, it is observed that not
only the number of matches is more than sufficient for the image rectification but also that
the matches are well-distributed over the entire scene.

Contrary to that, in the dataset from Berlin most of the matches are located in the
eastern part of the city, which is illuminated using sodium vapor lamps (Figure 10a). In
the dataset of Milan #2, a similar clustering of the matches can be observed (Figure 10d).
Here, most of the matches are located outside the city center, where LEDs are used for
street lighting.
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Table 1. Details of the NTL imagery used for evaluation.

PhotoID ISS043-
E-93480

ISS035-
E-17210

ISS030-
E-258865

ISS043-
E-93510

ISS030-
E-211480

ISS043-
E-121713

ISS064-
E-28381

ISS065-
E-203810

ISS026-
E-6241

Quicklook
(rotated 90◦)

Name Paris,
France

Berlin,
Germany

Milan #1,
Italy

Milan #2,
Italy

Vienna,
Austria

Rome,
Italy

Harbin,
China

Algiers,
Algeria

Las Vegas,
USA

Center point
(Lat (◦), Long (◦)) 48.9, 2.3 52.5, 13.4 45.5, 9.2 45.5, 9.2 48.2, 16.4 41.9, 12.5 45.8, 126.6 36.7, 3.1 36.1, −115.2

Spatial resolution
(m) 7.6 8.7 8.5 7.3 9.4 7.6 6.9 6.4 26.6

Acquisition time
(GMT)

08.04.2015
23:18:37

06.04.2013
22:37:37

31.03.2012
00:45:28

08.04.2015
23:19:50

11.04.2012
00:02:41

14.04.2015
21:12:33

30.01.2021
11:47:52

24.07.2021
23:36:27

30.11.2010
12:05:27

Camera position
(Lat (◦), Long (◦),
Altitude (km))

48.2, 1.5,
394

51.7, 13.2,
396

46.7, 10.1,
391

46.3, 7.5,
394

47.8, 18.1,
391

42.6, 13.1,
394

44.5, 126.3,
415

36.7, 2.9,
415

38.7, −112.2,
350

Camera model Nikon D4 Nikon D3S Nikon D3 Nikon D4 Nikon D3S Nikon D4 Nikon D5 Nikon D5 Nikon D3S

Sensor format
(mm × mm) 36.0 × 23.9 36.0 × 23.9 36.0 × 23.9 36.0 × 23.9 36.0 × 23.9 36.0 × 23.9 35.9 × 23.9 35.9 × 23.9 36.0 × 23.9

Focal length
(mm) 400 400 400 400 400 400 400 400 180

Tilt angle (◦) 17 13 23 N/A (22) 26 15 20 N/A (2) 52
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Table 2. Matching results.

Name
Before

RANSAC
(#machtes)

After
RANSAC
(#matches)

Range
(px)

Mean
(px)

RMSE
(px)

Paris 816 770 0.00–15.00 4.73 5.82
Berlin 49 19 0.00–14.38 5.07 6.36
Milan #1 42 23 0.00–14.75 6.16 7.22
Milan #2 28 11 0.00–12.30 5.59 6.84
Vienna 339 306 0.00–14.79 4.80 5.78
Rome 248 233 0.00–13.19 4.86 5.76
Harbin 38 14 0.00–14.43 5.41 6.89
Algiers 122 100 0.00–14.48 7.39 8.21
Las Vegas 58 18 0.00–8.22 2.62 3.44

Paris Berlin
Milan #1

Milan #2
Vienna Rome Harbin Algiers

Las Vegas
0

5

10

15

De
vi

at
io

n 
[p

x]

Minimum
Maximum
Mean with
standard deviation

Not only the type of illumination seems to be important for the matching performance.
From the relatively low amount and distribution of matches in the datasets from Milan,
Harbin and Las Vegas, it is also observed that grid-plan-based street networks are more
challenging for the used matching approach. For Las Vegas, the temporal difference
between the acquisition of the NTL photo and the OSM reference is also large, and the
concerned street network changed in the meantime.

The relatively low maximum deviation of 8.22 px and RMSE of 3.44 px for Las Vegas
is a bit misleading, as the matches are not well-distributed over the scene. As is seen in
the later evaluation of the absolute accuracy, the RANSAC deviations alone are not usable
to determine matching quality. Except for one match, all matches which were found for
this dataset are all located on the city borders (Figure 10h). Many of the few matches are
clustered on golf courses, which exhibit more irregular road patterns.

For all matched datasets, the absolute rectification accuracy was further evaluated.
The results are listed in Table 3, together with a plot of the minimum, maximum, mean and
standard deviation of the GCPs.

The GCPs measured in all the datasets have an RMSE ranging from 2.03 px to 6.70 px.
Taking into account the different image resolutions, this corresponds to an RMSE of 15.43 m
to 140.34 m. The dataset from Paris, for which the highest number of matches was found
(see Table 2), also features the lowest RMSE value of 2.03 px. However, the accuracy of the
datasets from Milan #1, Milan #2, Vienna, Rome, and Algiers is only slightly worse, with
RMSE values of 3.08 px, 3.34 px, 2.52 px, 2.20 px, and 3.40 px, respectively. This indicates
that a smaller number of matches is already sufficient to achieve accuracies comparable to
the dataset from Paris.

The datasets from Berlin, Harbin, and Las Vegas exhibit a slightly lower accuracy with
RMSE values of 4.85 px, 6.70 px, and 5.28 px, respectively. This is explained by the fact that
the found matches are not well-distributed over the images, see Figure 10a,f,h. The GCP
measured close to these matches have a relatively high accuracy, while those further away
are less accurate.

For visual inspection, a subsection of each georeferenced NTL image is displayed
together with the reference Sentinel-2 image in Figures 9 and 11. From the alignment of
rivers and roads, it is seen that in all cases the image rectification worked reasonably well.
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(a) Berlin (b) Vienna

(c) Milan #1 (d) Milan #2

(e) Rome (f) Harbin

(g) Algiers (h) Las Vegas
Figure 10. Filtered matches obtained for datasets. For each dataset, a subsection of the reference
image containing all identified matches is shown on the left, and the complete NTL photo is shown
on the right.
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(a) Berlin (b) Vienna

(c) Milan #1 (d) Milan #2

(e) Rome (f) Harbin

(g) Algiers (h) Las Vegas
Figure 11. Subsection of georeferenced NTL scene (color image) overlaid onto reference Sentinel-2
image (greyscale).
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Table 3. Evaluation results of the manually selected GCPs.

Name Sentinel-2 Image
((Unit) Acquisition Time)

Min
(px)

Max
(px)

Mean
(px)

RMSE
(px)

Paris (A) 25.07.2019 10:50:31 0.72 3.51 1.87 2.03
Berlin (A) 16.02.2019 10:21:11 0.40 9.93 4.15 4.85
Milan #1 (B) 16.01.2022 10:22:49 0.63 5.05 2.73 3.08
Milan #2 (B) 16.01.2022 10:22:49 0.14 6.62 2.62 3.34
Vienna (B) 07.01.2022 09:53:09 0.72 5.48 2.10 2.52
Rome (A) 25.01.2022 10:03:11 0.97 3.33 2.08 2.19
Harbin (B) 20.04.2021 02:25:49 1.46 13.95 5.53 6.70
Algiers (B) 18.02.2022 10:29:49 0.29 5.22 3.02 3.40
Las Vegas (A) 04.02.2022 18:25:41 0.62 8.55 4.38 5.28

Paris Berlin
Milan #1

Milan #2
Vienna Rome Harbin Algiers

Las Vegas
0

5

10

De
vi

at
io

n 
[p

x] Minimum
Maximum
Mean with
standard deviation

4. Conclusions

An automatic processing approach for the georeferencing of high-resolution NTL
images was presented for urban centers. The results based on all processed datasets show
that, using street networks extracted for example from OpenStreetMap, point matches with
NTL images are identified and used to rectify the images. For suitable imagery, accuracies
of approximately 2 px are achieved, while for more challenging images, accuracies no worse
than 7 px were measured.

The results show that the matching algorithm performance strongly depends on the
scene content. Almost all of the matches found in the Berlin dataset are located in the
eastern part of the city. It is only speculated that the light emitted from the sodium vapor
lamps results in better recognizable contours in the NTL imagery and is therefore more
suitable for matching. This theory is further substantiated by the comparison of the Milan
scenes, where the installation of LEDs in the city center has lead to a significant reduction
in found matches. In the datasets from Las Vegas and Milan, most matches were found
outside of the city centers, which are dominated by grid plan street networks. For such
kind of street networks, the used matching scheme is less than ideal. The assumption that
the Hamming distance of the closest match is significantly better than the distance of the
second-closest match does not hold in this case, as most road crossings look identical in a
grid plan. Nevertheless, the fact that the Las Vegas dataset, which also features a rather low
spatial resolution of 26.6 m, is still matched to the OSM reference highlights the robustness
of the presented algorithm.

There is no general statement about the accuracy of OSM data in literature, only for
some local regions. Therefore, the accuracy evaluation using Sentinel-2 as an independent
reference also serves as an independent assessment of the OSM data accuracy. Fortunately,
the achieved accuracies indicate that OSM is usable as a reliable reference, at least for
major metropolitan areas. Of course, it would also be possible to use other, comparable
street databases as a matching reference, for example, roads directly extacted from daytime
imagery such as from Sentinel-2 imagery [24].

For an operational processing chain, tailored for a dedicated nighttime satellite mission,
the significant improvements in the performance of the presented approach are straight
forward. Unlike for the astronaut photos used in this work, a detailed sensor model as well
as attitude and orbit information would be included in the processing. Such additional
data would enable bringing the images to the same scale, rotation and coarse location
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before matching. This would improve the matching performance significantly. Using the
sensor model and a digital elevation model, a precise orthorectification is performable
based on the found matches, which would further improve the geolocation accuracy of the
presented method.

This work focused on urban areas, first of all because these are the most promising
for the presented methodology, but also because most of the high-resolution NTL imagery
available on the Gateway to astronaut photography of Earth is focused on cities. Of course, it
would also be relevant to test and adapt the presented approach on more challenging, less
illuminated rural areas. Furthermore, towards a fully automatic operational processing
chain, more and more challenging scenarios, such as the effect of clouds, should be exercised
in the future.
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