Martinis, Sandro and Groth, Sandro and Wieland, Marc and Knopp, Lisa and Rättich, Michaela (2022) Towards a global seasonal and permanent reference water product from Sentinel-1/2 data for improved flood mapping. Remote Sensing of Environment, 278 (113077), pp. 1-19. Elsevier. doi: 10.1016/j.rse.2022.113077. ISSN 0034-4257.
Full text not available from this repository.
Abstract
Satellite-based flood mapping has become an important part of disaster response. In order to accurately distinguish flood inundation from normally present conditions, up-to-date, high-resolution information on the seasonal water cover is crucial. This information is usually neglected in disaster management, which may result in a non-reliable representation of the flood extent, mainly in regions with highly dynamic hydrological conditions. In this study, we present a fully automated method to generate a global reference water product specifically designed for the use in global flood mapping applications based on high resolution Earth Observation data. The proposed methodology combines existing processing pipelines for flood detection based on Sentinel-1/2 data and aggregates permanent as well as seasonal water masks over an adjustable reference time period. The water masks are primarily based on the analysis of Sentinel-2 data and are complemented by Sentinel-1-based information in optical data scarce regions. First results are demonstrated in five selected study areas (Australia, Germany, India, Mozambique, and Sudan), distributed across different climate zones and are systematically compared with external products. Further, the proposed product is exemplary applied to three real flood events in order to evaluate the impact of the used reference water mask on the derived flood extent. Results show, that it is possible to generate a consistent reference water product at 10–20 m spatial resolution, that is more suitable for the use in rapid disater response than previous masks. The proposed multi-sensor approach is capable of producing reasonable results, even if only few or no information from optical data is available. Further it becomes clear, that the consideration of seasonality of water bodies, especially in regions with highly dynamic hydrological and climatic conditions, reduces potential over-estimation of the inundation extent and gives a more reliable picture on floodaffected areas.
Item URL in elib: | https://elib.dlr.de/186704/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Towards a global seasonal and permanent reference water product from Sentinel-1/2 data for improved flood mapping | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 17 May 2022 | ||||||||||||||||||||||||
Journal or Publication Title: | Remote Sensing of Environment | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 278 | ||||||||||||||||||||||||
DOI: | 10.1016/j.rse.2022.113077 | ||||||||||||||||||||||||
Page Range: | pp. 1-19 | ||||||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||||||
ISSN: | 0034-4257 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Sentinel-1, Sentinel-2, Permanent reference water, Seasonal reference water, Flood, Time series analysis | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||||||||||
Deposited By: | Martinis, Sandro | ||||||||||||||||||||||||
Deposited On: | 08 Jun 2022 10:11 | ||||||||||||||||||||||||
Last Modified: | 20 Oct 2023 07:33 |
Repository Staff Only: item control page