Runge, Jakob (2021) Necessary and sufficient graphical conditions for optimal adjustment sets in causal graphical models with hidden variables. In: 35th Conference on Neural Information Processing Systems, NeurIPS 2021. Curran Associates, Inc.. Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS 2021), 2021-12-06 - 2021-12-14, Virtuell. ISBN 978-171384539-3. ISSN 1049-5258.
PDF
830kB |
Offizielle URL: https://proceedings.neurips.cc/paper/2021/file/8485ae387a981d783f8764e508151cd9-Paper.pdf
Kurzfassung
The problem of selecting optimal backdoor adjustment sets to estimate causal effects in graphical models with hidden and conditioned variables is addressed. Previous work has defined optimality as achieving the smallest asymptotic estimation variance and derived an optimal set for the case without hidden variables. For the case with hidden variables there can be settings where no optimal set exists and currently only a sufficient graphical optimality criterion of limited applicability has been derived. In the present work optimality is characterized as maximizing a certain adjustment information which allows to derive a necessary and sufficient graphical criterion for the existence of an optimal adjustment set and a definition and algorithm to construct it. Further, the optimal set is valid if and only if a valid adjustment set exists and has higher (or equal) adjustment information than the Adjust-set proposed in Perkovi{\'c} et~al. [Journal of Machine Learning Research, 18: 1--62, 2018] for any graph. The results translate to minimal asymptotic estimation variance for a class of estimators whose asymptotic variance follows a certain information-theoretic relation. Numerical experiments indicate that the asymptotic results also hold for relatively small sample sizes and that the optimal adjustment set or minimized variants thereof often yield better variance also beyond that estimator class. Surprisingly, among the randomly created setups more than 90\% fulfill the optimality conditions indicating that also in many real-world scenarios graphical optimality may hold.
elib-URL des Eintrags: | https://elib.dlr.de/186444/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag, Poster) | ||||||||||||||||||||||||
Titel: | Necessary and sufficient graphical conditions for optimal adjustment sets in causal graphical models with hidden variables | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Dezember 2021 | ||||||||||||||||||||||||
Erschienen in: | 35th Conference on Neural Information Processing Systems, NeurIPS 2021 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||||||
Verlag: | Curran Associates, Inc. | ||||||||||||||||||||||||
ISSN: | 1049-5258 | ||||||||||||||||||||||||
ISBN: | 978-171384539-3 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Causal inference, Graphical models, Information theory | ||||||||||||||||||||||||
Veranstaltungstitel: | Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS 2021) | ||||||||||||||||||||||||
Veranstaltungsort: | Virtuell | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 6 Dezember 2021 | ||||||||||||||||||||||||
Veranstaltungsende: | 14 Dezember 2021 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R - keine Zuordnung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - keine Zuordnung | ||||||||||||||||||||||||
Standort: | Jena | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften > Datenanalyse und -intelligenz | ||||||||||||||||||||||||
Hinterlegt von: | Gerhardus, Andreas | ||||||||||||||||||||||||
Hinterlegt am: | 05 Dez 2022 10:48 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:47 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags