Piontek, Dennis (2022) A novel machine learning-based satellite retrieval of volcanic ash for Meteosat covering the petrological variability. Dissertation, Ludwig-Maximilians-Universität München. doi: 10.5282/edoc.29799.
PDF
35MB |
Official URL: https://edoc.ub.uni-muenchen.de/29799/
Item URL in elib: | https://elib.dlr.de/186372/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Document Type: | Thesis (Dissertation) | ||||||||
Title: | A novel machine learning-based satellite retrieval of volcanic ash for Meteosat covering the petrological variability | ||||||||
Authors: |
| ||||||||
Date: | 2022 | ||||||||
Journal or Publication Title: | Universitätsbibliothek der Ludwig-Maximilians-Universität München | ||||||||
Refereed publication: | No | ||||||||
Open Access: | Yes | ||||||||
DOI: | 10.5282/edoc.29799 | ||||||||
Number of Pages: | 176 | ||||||||
Status: | Published | ||||||||
Keywords: | Vulkanasche, Satellitenretrieval, Eyjafjallajökull, Puyehue-Cordón Caulle | ||||||||
Institution: | Ludwig-Maximilians-Universität München | ||||||||
Department: | Fakultät für Physik | ||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||
HGF - Program: | Space | ||||||||
HGF - Program Themes: | Earth Observation | ||||||||
DLR - Research area: | Raumfahrt | ||||||||
DLR - Program: | R EO - Earth Observation | ||||||||
DLR - Research theme (Project): | R - Atmospheric and climate research | ||||||||
Location: | Oberpfaffenhofen | ||||||||
Institutes and Institutions: | Institute of Atmospheric Physics > Cloud Physics | ||||||||
Deposited By: | Piontek, Dennis | ||||||||
Deposited On: | 13 May 2022 09:00 | ||||||||
Last Modified: | 13 May 2022 09:00 |
Repository Staff Only: item control page