Brust, Clemens-Alexander und Barz, Björn und Denzler, Joachim (2022) Self-Supervised Learning from Semantically Imprecise Data. In: 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2022, 5, Seiten 27-35. SCITEPRESS. Computer Vision Theory and Applications (VISAPP), 2022-02-06 - 2022-02-08, Online. doi: 10.5220/0010766700003124. ISBN 978-989-758-555-5. ISSN 2184-4321.
PDF
341kB |
Offizielle URL: https://www.scitepress.org/PublicationsDetail.aspx?ID=PSP7VmVv1RY=&t=1
Kurzfassung
Learning from imprecise labels such as animal or bird, but making precise predictions like snow bunting at inference time is an important capability for any classifier when expertly labeled training data is scarce. Contributions by volunteers or results of web crawling lack precision in this manner, but are still valuable. And crucially, these weakly labeled examples are available in larger quantities for lower cost than high-quality bespoke training data. CHILLAX, a recently proposed method to tackle this task, leverages a hierarchical classifier to learn from imprecise labels. However, it has two major limitations. First, it does not learn from examples labeled as the root of the hierarchy, e.g., object. Second, an extrapolation of annotations to precise labels is only performed at test time, where confident extrapolations could be already used as training data. In this work, we extend CHILLAX with a self-supervised scheme using constrained semantic extrapolation to generate pseudo-labels. This addresses the second concern, which in turn solves the first problem, enabling an even weaker supervision requirement than CHILLAX. We evaluate our approach empirically, showing that our method allows for a consistent accuracy improvement of 0.84 to 1.19 percent points over CHILLAX and is suitable as a drop-in replacement without any negative consequences such as longer training times.
elib-URL des Eintrags: | https://elib.dlr.de/186359/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Self-Supervised Learning from Semantically Imprecise Data | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2022 | ||||||||||||||||
Erschienen in: | 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2022 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Band: | 5 | ||||||||||||||||
DOI: | 10.5220/0010766700003124 | ||||||||||||||||
Seitenbereich: | Seiten 27-35 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | SCITEPRESS | ||||||||||||||||
ISSN: | 2184-4321 | ||||||||||||||||
ISBN: | 978-989-758-555-5 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Imprecise Data, Self-Supervised Learning, Pseudo-Labels | ||||||||||||||||
Veranstaltungstitel: | Computer Vision Theory and Applications (VISAPP) | ||||||||||||||||
Veranstaltungsort: | Online | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 6 Februar 2022 | ||||||||||||||||
Veranstaltungsende: | 8 Februar 2022 | ||||||||||||||||
Veranstalter : | INSTICC | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Intelligente Analysen und Methoden zur sicheren Softwareentwicklung | ||||||||||||||||
Standort: | Jena | ||||||||||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften > Datenanalyse und -intelligenz | ||||||||||||||||
Hinterlegt von: | Brust, Dr. Clemens-Alexander | ||||||||||||||||
Hinterlegt am: | 07 Sep 2022 10:42 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:47 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags