elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Traceable Imaging Spectrometer Calibration and Transformation of Geometric and Spectral Pixel Properties

Baumgartner, Andreas (2022) Traceable Imaging Spectrometer Calibration and Transformation of Geometric and Spectral Pixel Properties. Dissertation, Universität Osnabrück. doi: 10.48693/38.

[img] PDF
14MB

Offizielle URL: https://osnadocs.ub.uni-osnabrueck.de/handle/ds-202202076056

Kurzfassung

Over the past several decades, push-broom imaging spectrometers have become a common Earth observation tool. Instruments of this type must be calibrated to convert the raw sensor data into units of spectral radiance. Calibration is in this case a two-step process: First, a sensor model is obtained by performing calibration measurements, which is then used to convert raw signals to spectral radiance data. Further processing steps can be performed to correct for optical image distortions. In this work, we show the complete calibration process for push-broom imaging spectrometers, including uncertainty propagation. Although the focus is specifically on calibrating a HySpex VNIR-1600 airborne-imaging spectrometer, all methods can be adapted for other instruments. We discuss the theory of push-broom imaging spectrometers by introducing a generic sensor model, which includes the main parameters and effects of such instruments. Calibrating detector-related effects, such as dark signal, the noise as a function of the signal, and temperature effects is shown. Correcting temperature effects significantly reduces measurement errors. To determine the signal non-linearity, we built a setup based on the light-addition method and improved this method to allow smaller signal level distances of the sampling points of the non-linearity curve. In addition, we investigate the non-linearity of the integration time. The signal (<=15 %) and the integration time (<=0.5 %) non-linearities can be corrected with negligible errors. After correcting both non-linearity effects, a smearing effect is revealed, which is investigated in detail. We use a collimator and monochromator setup for calibrating the geometric and spectral parameters, respectively. To accurately model the angular and spectral response functions, we propose using cubic splines, which leads to significant improvements compared to previously used Gaussian functions. We present a new method that allows interpolation of the cubic spline based response functions for pixels not measured. The results show that the spectral and geometric properties are non-uniform and change rapidly within a few pixels. The absolute radiometric calibration is performed with a lamp-plaque setup and an integrating sphere is used for flat-fielding. To mitigate the influence of sphere non-uniformities, we rotate the instrument along the across-track angle to measure the same spot of the sphere with each pixel. We investigate potential systematic errors and use Monte Carlo simulations to determine the uncertainties of the radiometric calibration. In addition, we measure the polarization sensitivity with a wire-grid polarizer. Finally, we propose a novel image transformation method that allows manipulation of geometric and spectral properties of each pixel individually. Image distortions can be corrected by changing a pixel's center angles, center wavelength, and response function shape. This is done by using a transformation matrix that maps each pixel of a target sensor B to the pixels of a source sensor A. This matrix is derived from two cross-correlation matrices: Sensor A and itself, and sensor B and sensor A. We provide the mathematical background and discuss the propagation of uncertainty. A case study shows that the method can significantly improve data quality.

elib-URL des Eintrags:https://elib.dlr.de/186216/
Dokumentart:Hochschulschrift (Dissertation)
Titel:Traceable Imaging Spectrometer Calibration and Transformation of Geometric and Spectral Pixel Properties
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Baumgartner, AndreasAndreas.Baumgartner (at) dlr.dehttps://orcid.org/0000-0002-8495-5407134908110
Datum:7 Februar 2022
Referierte Publikation:Nein
Open Access:Ja
DOI:10.48693/38
Seitenanzahl:154
Status:veröffentlicht
Stichwörter:Imaging Spectrometer; Calibration; Image Transformation; HySpex; Hyperspectral; CHB
Institution:Universität Osnabrück
Abteilung:Fachbereich Mathematik und Informatik
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Optische Fernerkundung, R - Spektroskopische Verfahren der Atmosphäre
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Experimentelle Verfahren
Hinterlegt von: Baumgartner, Andreas
Hinterlegt am:28 Apr 2022 14:32
Letzte Änderung:12 Mai 2023 08:50

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.