elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Experimental Validation of Entropy Driven Swarm Exploration under Sparsity Constraints with Sparse Bayesian Learning

Manss, Christoph und Kuehner, Isabel und Shutin, Dmitriy (2022) Experimental Validation of Entropy Driven Swarm Exploration under Sparsity Constraints with Sparse Bayesian Learning. Entropy, Seiten 1-22. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/e24050580. ISSN 1099-4300.

[img] PDF - Nur DLR-intern zugänglich - Verlagsversion (veröffentlichte Fassung)
3MB

Offizielle URL: https://www.mdpi.com/1099-4300/24/5/580

Kurzfassung

Increasing the autonomy of multi-agent systems or swarms for exploration missions requires tools for efficient information gathering. This work studies this problem from theoretical and experimental perspectives and evaluates an exploration system for multiple ground robots that cooperatively explore a stationary spatial process. For the distributed model, two conceptually different distribution paradigms are considered. The exploration is based on fusing distributively gathered information using Sparse Bayesian Learning (SBL), which permits representing the spatial process in a compressed manner and thus reduces the model complexity and communication load required for the exploration. An entropy-based exploration criterion is formulated to guide the agents. This criterion uses an estimation of a covariance matrix of the model parameters, which is then quantitatively characterized using a D-optimality criterion. The new sampling locations for the agents are then selected to minimize this criterion. To this end, a distributed optimization of the D-optimality criterion is derived. The proposed entropy-driven exploration is then presented from a system perspective and validated in laboratory experiments with two ground robots. The experiments show that SBL together with the distributed entropy-driven exploration is real-time capable and leads to a better performance with respect to time and accuracy compared with similar state-of-the-art algorithms.

elib-URL des Eintrags:https://elib.dlr.de/186164/
Dokumentart:Zeitschriftenbeitrag
Titel:Experimental Validation of Entropy Driven Swarm Exploration under Sparsity Constraints with Sparse Bayesian Learning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Manss, Christophchristoph.manss (at) dfki.dehttps://orcid.org/0000-0003-4851-2622NICHT SPEZIFIZIERT
Kuehner, Isabelisabel.kuehner (at) web.dehttps://orcid.org/0000-0002-8472-3286NICHT SPEZIFIZIERT
Shutin, Dmitriydmitriy.shutin (at) dlr.dehttps://orcid.org/0000-0002-6065-6453NICHT SPEZIFIZIERT
Datum:20 April 2022
Erschienen in:Entropy
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.3390/e24050580
Seitenbereich:Seiten 1-22
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
Name der Reihe:MDPI
ISSN:1099-4300
Status:veröffentlicht
Stichwörter:Swarm exploration, multi-agent systems, entropy-driven exploration, optimal experiment design
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Kommunikation, Navigation, Quantentechnologien
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R KNQ - Kommunikation, Navigation, Quantentechnologie
DLR - Teilgebiet (Projekt, Vorhaben):R - Schwarmnavigation
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Kommunikation und Navigation > Nachrichtensysteme
Hinterlegt von: Shutin, Dmitriy
Hinterlegt am:22 Apr 2022 14:54
Letzte Änderung:22 Apr 2022 14:54

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.