elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

The Benefit of Accelerometers Based on Cold Atom Interferometry for Future Satellite Gravity Missions

Knabe, Annike and Schilling, Manuel and Wu, Hu and HosseiniArani, Alireza and Müller, Jürgen and Beaufils, Quentin and Pereira dos Santos, Franck (2022) The Benefit of Accelerometers Based on Cold Atom Interferometry for Future Satellite Gravity Missions. In: Geodesy for a sustainable Earth. Springer, Berlin, Heidelberg. Scientific Assembly of the International Association of Geodesy, 2021-06-28 - 2021-07-02, Beijing, China (online). doi: 10.1007/1345_2022_151. ISSN 0939-9585.

[img] PDF
1MB

Official URL: https://link.springer.com/chapter/10.1007/1345_2022_151

Abstract

Satellite gravity missions, like GRACE and GRACE Follow-On, successfully map the Earth's gravity field and its change over time. With the addition of the laser ranging interferometer (LRI) to GRACEFO, a significant improvement over GRACE for intersatellite ranging was achieved. One of the limiting factors is the accelerometer for measuring the non-gravitational forces acting on the satellite. The classical electrostatic accelerometers are affected by a drift at low frequencies. This drawback can be counterbalanced by adding an accelerometer based on cold atom interferometry (CAI) due to its high long-term stability. The CAI concept has already been successfully demonstrated in ground experiments and is expected to show an even higher sensitivity in space. In order to investigate the potential of the CAI concept for future satellite gravity missions, a closed-loop simulation is performed in the context of GRACE-FO like missions. The sensitivity of the CAI accelerometer is estimated based on state-of-the-art ground sensors and predictions for space applications. The sensor performance is tested for different scenarios and the benefits to the gravity field solutions are quantitatively evaluated. It is shown that a classical accelerometer aided by CAI technology improves the results of the gravity field recovery especially in reducing the striping effects. The non-gravitational accelerations are modelled using a detailed surface model of a GRACE-like satellite body. This is required for a realistic determination of the variations of the non-gravitational accelerations during one interferometer cycle. It is demonstrated that the estimated error due to this variation is significant. We consider different orbit altitudes and also analyze the effect of drag compensation.

Item URL in elib:https://elib.dlr.de/186092/
Document Type:Conference or Workshop Item (Speech)
Title:The Benefit of Accelerometers Based on Cold Atom Interferometry for Future Satellite Gravity Missions
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Knabe, AnnikeInstitut für Erdmessung, Leibniz Universität Hannoverhttps://orcid.org/0000-0002-6603-8648UNSPECIFIED
Schilling, ManuelUNSPECIFIEDhttps://orcid.org/0000-0002-9677-0119UNSPECIFIED
Wu, HuLUH, Leibniz University of Hannoverhttps://orcid.org/0000-0002-2585-5123UNSPECIFIED
HosseiniArani, AlirezaInstitut für Erdmessung, Leibniz Universität Hannoverhttps://orcid.org/0000-0002-5080-7094UNSPECIFIED
Müller, JürgenInstitut für Erdmessung, Leibniz Universität Hannover, Germanyhttps://orcid.org/0000-0003-1247-9525UNSPECIFIED
Beaufils, QuentinLNE--SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, 61, avenue de l'Observatoire, F--75014 PARIS, France, Paris, FRANCEUNSPECIFIEDUNSPECIFIED
Pereira dos Santos, FranckLNE-SYRTE, Observatoire de Paris, Université PSL, CNRS,Sorbonne Université 61 avenue de l’Observatoire, 75014 Paris, Francehttps://orcid.org/0000-0003-0659-5028UNSPECIFIED
Date:2022
Journal or Publication Title:Geodesy for a sustainable Earth
Refereed publication:Yes
Open Access:Yes
Gold Open Access:No
In SCOPUS:No
In ISI Web of Science:No
DOI:10.1007/1345_2022_151
Editors:
EditorsEmailEditor's ORCID iDORCID Put Code
Freymueller, Jeffrey T.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Sánchez, LauraDGFI-TUMUNSPECIFIEDUNSPECIFIED
Publisher:Springer, Berlin, Heidelberg
Series Name:International Association of Geodesy Symposia
ISSN:0939-9585
Status:Published
Keywords:cold atom interferometer accelerometry, future satellite gravimetry missions, closed-loop simulation
Event Title:Scientific Assembly of the International Association of Geodesy
Event Location:Beijing, China (online)
Event Type:international Conference
Event Start Date:28 June 2021
Event End Date:2 July 2021
Organizer:International Association of Geodesy
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Communication, Navigation, Quantum Technology
DLR - Research area:Raumfahrt
DLR - Program:R KNQ - Communication, Navigation, Quantum Technology
DLR - Research theme (Project):R - Inertial Sensing for Space Applications
Location: Hannover
Institutes and Institutions:Institute for Satellite Geodesy and Inertial Sensing > Satellite Geodesy and Geodetic Modelling
Deposited By: Schilling, Manuel
Deposited On:01 Sep 2022 08:12
Last Modified:24 Apr 2024 20:47

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.