Maruyama, Daigo und Bekemeyer, Philipp und Görtz, Stefan und Coggon, Simon und Sharma S, Sanjiv (2021) Data-driven Bayesian inference of turbulence model closure coefficients incorporating epistemic uncertainty. Acta Mechanica Sinica, 37, Seiten 1812-1838. Springer. doi: 10.1007/s10409-021-01152-5. ISSN 0567-7718.
PDF
- Verlagsversion (veröffentlichte Fassung)
4MB |
Offizielle URL: https://link.springer.com/article/10.1007/s10409-021-01152-5
Kurzfassung
We introduce a framework for statistical inference of the closure coefficients using machine learning methods. The objective of this framework is to quantify the epistemic uncertainty associated with the closure model by using experimental data via Bayesian statistics. The framework is tailored towards cases for which a limited amount of experimental data is available. It consists of two components. First, by treating all latent variables (non-observed variables) in the model as stochastic variables, all sources of uncertainty of the probabilistic closure model are quantified by a fully Bayesian approach. The probabilistic model is defined to consist of the closure coefficients as parameters and other parameters incorporating noise. Then, the uncertainty associated with the closure coefficients is extracted from the overall uncertainty by considering the noise being zero. The overall uncertainty is rigorously evaluated by using Markov-Chain Monte Carlo sampling assisted by surrogate models. We apply the framework to the Spalart-Allmars one-equation turbulence model. Two test cases are considered, including an industrially relevant full aircraft model at transonic flow conditions, the Airbus XRF1. Eventually, we demonstrate that epistemic uncertainties in the closure coefficients result into uncertainties in flow quantities of interest which are prominent around, and downstream, of the shock occurring over the XRF1 wing. This data-driven approach could help to enhance the predictive capabilities of computational fluid dynamics (CFD) in terms of reliable turbulence modeling at extremes of the flight envelope if measured data is available, which is important in the context of robust design and towards virtual aircraft certification. The plentiful amount of information about the uncertainties could also assist when it comes to estimating the influence of the measured data on the inferred model coefficients. Finally, the developed framework is flexible and can be applied to different test cases and to various turbulence models.
elib-URL des Eintrags: | https://elib.dlr.de/186003/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Data-driven Bayesian inference of turbulence model closure coefficients incorporating epistemic uncertainty | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Dezember 2021 | ||||||||||||||||||||||||
Erschienen in: | Acta Mechanica Sinica | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 37 | ||||||||||||||||||||||||
DOI: | 10.1007/s10409-021-01152-5 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1812-1838 | ||||||||||||||||||||||||
Verlag: | Springer | ||||||||||||||||||||||||
ISSN: | 0567-7718 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Turbulence modeling, Uncertainty quantification, Parameter calibration, Bayesian statistics, Surrogate-assisted methods, Spalart-Allmaras one-equation turbulence model, Large-scale industrial aircraft use-case | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Digitale Technologien | ||||||||||||||||||||||||
Standort: | Braunschweig | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > CASE, BS | ||||||||||||||||||||||||
Hinterlegt von: | Görtz, Stefan | ||||||||||||||||||||||||
Hinterlegt am: | 04 Apr 2022 09:00 | ||||||||||||||||||||||||
Letzte Änderung: | 28 Jun 2023 11:22 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags