Mou, LiChao (2020) Deep Vision in Optical Imagery: From Perception to Reasoning. Dissertation, TU München.
PDF
61MB |
Offizielle URL: https://mediatum.ub.tum.de/doc/1524790/1524790.pdf
Kurzfassung
Deep learning has achieved extraordinary success in a wide range of tasks in computer vision field over the past years. Remote sensing data present different properties as compared to natural images/videos, due to their unique imaging technique, shooting angle, etc. For instance, hyperspectral images usually have hundreds of spectral bands, offering additional information, and the size of objects (e.g., vehicles) in remote sensing images is quite limited, which brings challenges for detection or segmentation tasks. This thesis focuses on two kinds of remote sensing data, namely hyper/multi-spectral and high-resolution images, and explores several methods to try to find answers to the following questions: - In comparison with natural images or videos in computer vision, the unique asset of hyper/multi-spectral data is their rich spectral information. But what this “additional” information brings for learning a network? And how do we take full advantage of these spectral bands? - Remote sensing images at high resolution have pretty different characteristics, bringing challenges for several tasks, for example, small object segmentation. Can we devise tailored networks for such tasks? - Deep networks have produced stunning results in a variety of perception tasks, e.g., image classification, object detection, and semantic segmentation. While the capacity to reason about relations over space is vital for intelligent species. Can a network/module with the capacity of reasoning benefit to parsing remote sensing data? To this end, a couple of networks are devised to figure out what a network learns from hyperspectral images and how to efficiently use spectral bands. In addition, a multi-task learning network is investigated for the instance segmentation of vehicles from aerial images and videos. Finally, relational reasoning modules are designed to improve semantic segmentation of aerial images.
elib-URL des Eintrags: | https://elib.dlr.de/185907/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Hochschulschrift (Dissertation) | ||||||||
Titel: | Deep Vision in Optical Imagery: From Perception to Reasoning | ||||||||
Autoren: |
| ||||||||
Datum: | 2020 | ||||||||
Referierte Publikation: | Nein | ||||||||
Open Access: | Ja | ||||||||
Seitenanzahl: | 176 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | deep learning models, optical remote sensing, hyperspectral, image classification, change detection, object detection, semantic segmentation, aerial images, ROSIS, AVIRIS | ||||||||
Institution: | TU München | ||||||||
Abteilung: | Ingenieurfakultät Bau Geo Umwelt | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz, R - Optische Fernerkundung | ||||||||
Standort: | Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||
Hinterlegt von: | Haschberger, Dr.-Ing. Peter | ||||||||
Hinterlegt am: | 28 Mär 2022 13:20 | ||||||||
Letzte Änderung: | 28 Mär 2022 13:20 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags