elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Deep Vision in Optical Imagery: From Perception to Reasoning

Mou, LiChao (2020) Deep Vision in Optical Imagery: From Perception to Reasoning. Dissertation, TU München.

[img] PDF
61MB

Offizielle URL: https://mediatum.ub.tum.de/doc/1524790/1524790.pdf

Kurzfassung

Deep learning has achieved extraordinary success in a wide range of tasks in computer vision field over the past years. Remote sensing data present different properties as compared to natural images/videos, due to their unique imaging technique, shooting angle, etc. For instance, hyperspectral images usually have hundreds of spectral bands, offering additional information, and the size of objects (e.g., vehicles) in remote sensing images is quite limited, which brings challenges for detection or segmentation tasks. This thesis focuses on two kinds of remote sensing data, namely hyper/multi-spectral and high-resolution images, and explores several methods to try to find answers to the following questions: - In comparison with natural images or videos in computer vision, the unique asset of hyper/multi-spectral data is their rich spectral information. But what this “additional” information brings for learning a network? And how do we take full advantage of these spectral bands? - Remote sensing images at high resolution have pretty different characteristics, bringing challenges for several tasks, for example, small object segmentation. Can we devise tailored networks for such tasks? - Deep networks have produced stunning results in a variety of perception tasks, e.g., image classification, object detection, and semantic segmentation. While the capacity to reason about relations over space is vital for intelligent species. Can a network/module with the capacity of reasoning benefit to parsing remote sensing data? To this end, a couple of networks are devised to figure out what a network learns from hyperspectral images and how to efficiently use spectral bands. In addition, a multi-task learning network is investigated for the instance segmentation of vehicles from aerial images and videos. Finally, relational reasoning modules are designed to improve semantic segmentation of aerial images.

elib-URL des Eintrags:https://elib.dlr.de/185907/
Dokumentart:Hochschulschrift (Dissertation)
Titel:Deep Vision in Optical Imagery: From Perception to Reasoning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Mou, LiChaoLiChao.Mou (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2020
Referierte Publikation:Nein
Open Access:Ja
Seitenanzahl:176
Status:veröffentlicht
Stichwörter:deep learning models, optical remote sensing, hyperspectral, image classification, change detection, object detection, semantic segmentation, aerial images, ROSIS, AVIRIS
Institution:TU München
Abteilung:Ingenieurfakultät Bau Geo Umwelt
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz, R - Optische Fernerkundung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Haschberger, Dr.-Ing. Peter
Hinterlegt am:28 Mär 2022 13:20
Letzte Änderung:28 Mär 2022 13:20

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.