Bousdar Ahmed, Dina und Munoz Diaz-Ropero, Estefania (2022) Survey of Machine Learning Methods Applied to Urban Mobility. IEEE Access. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/ACCESS.2022.3159668. ISSN 2169-3536.
PDF
- Verlagsversion (veröffentlichte Fassung)
3MB |
Kurzfassung
To increase the sustainability in urban mobility, it is necessary to optimally combine public and shared vehicles throughout a passenger's trip. In this work, we present a survey on urban mobility based on passengers' data and machine learning methods. We focus on four applications for urban mobility: public datasets, passenger localization, detection of the transport mode and pattern recognition and generation of mobility models. Public datasets lack data of multimodal trips and are in need of guidelines to facilitate the data collection and documentation processes. Passenger localization is predominantly done through fingerprinting in indoor environments; and fingerprinting relies on unsupervised learning to survey access points. The most common mean of transport detected is the bus, followed by walking and biking, while e-scooters are not included within the detected transport modes. The existing works focus on predicting the travel time of the passenger's trajectory and no machine learning method stands out to estimate the travel time. There is still a need for works that analyze how passengers make use of the urban infrastructure, which will support municipalities and transport mode operators in resource planning and service design.
elib-URL des Eintrags: | https://elib.dlr.de/185894/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Survey of Machine Learning Methods Applied to Urban Mobility | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 15 März 2022 | ||||||||||||
Erschienen in: | IEEE Access | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Ja | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
DOI: | 10.1109/ACCESS.2022.3159668 | ||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||
ISSN: | 2169-3536 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Transport modes, public, shared, artificial intelligence, pedestrian, passenger, bus, car, subway, e-scooter, passenger-centric | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Verkehr | ||||||||||||
HGF - Programmthema: | Verkehrssystem | ||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||
DLR - Forschungsgebiet: | V VS - Verkehrssystem | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - VMo4Orte - Vernetzte Mobilität für lebenswerte Orte | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nachrichtensysteme | ||||||||||||
Hinterlegt von: | Bousdar Ahmed, Dina | ||||||||||||
Hinterlegt am: | 21 Apr 2022 09:53 | ||||||||||||
Letzte Änderung: | 24 Jan 2023 12:35 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags