Goudarzi, Armin und Spehr, Carsten und Herbold, Steffen (2022) Expert decision support system for aeroacoustic classification. Journal of the Acoustical Society of America, 151 (2), Seiten 1259-1276. Acoustical Society of America. doi: 10.1121/10.0009322. ISSN 0001-4966.
PDF
- Verlagsversion (veröffentlichte Fassung)
5MB |
Offizielle URL: https://doi.org/10.1121/10.0009322
Kurzfassung
This paper presents an Expert Decision Support System for the identification of time-invariant, aeroacoustic source types. The system comprises two steps: first, acoustic properties are calculated based on spectral and spatial information. Second, clustering is performed based on these properties. The clustering aims at helping and guiding an expert for quick identification of different source types, providing an understanding of how sources differ. This supports the expert in determining similar or atypical behavior. A variety of features are proposed for capturing the characteristics of the sources. These features represent aeroacoustic properties that can be interpreted by both the machine and by experts. The features are independent of the absolute Mach number, which enables the proposed method to cluster data measured at different flow configurations. The method is evaluated on deconvolved beamforming data from two scaled airframe half-model measurements. For this exemplary data, the proposed support system method results in clusters that mostly correspond to the source types identified by the authors. The clustering also provides the mean feature values and the cluster hierarchy for each cluster, and for each cluster member, a clustering confidence. This additional information makes the results transparent and allows the expert to understand the clustering choices.
elib-URL des Eintrags: | https://elib.dlr.de/185799/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Zusätzliche Informationen: | published online: 23. February 2022, Online ISSN: 1520-8524 | ||||||||||||||||
Titel: | Expert decision support system for aeroacoustic classification | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 23 Februar 2022 | ||||||||||||||||
Erschienen in: | Journal of the Acoustical Society of America | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 151 | ||||||||||||||||
DOI: | 10.1121/10.0009322 | ||||||||||||||||
Seitenbereich: | Seiten 1259-1276 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | Acoustical Society of America | ||||||||||||||||
Name der Reihe: | AIP Publishing | ||||||||||||||||
ISSN: | 0001-4966 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | beamforming, CLEAN-SC, Machine Learning, clustering, acoustics | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||
HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Virtuelles Flugzeug und Validierung | ||||||||||||||||
Standort: | Göttingen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > Experimentelle Verfahren, GO | ||||||||||||||||
Hinterlegt von: | Micknaus, Ilka | ||||||||||||||||
Hinterlegt am: | 06 Apr 2022 16:39 | ||||||||||||||||
Letzte Änderung: | 01 Sep 2022 03:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags