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Expert decision support system for aeroacoustic source type
identification using clustering

A. Goudarzi,1,a) C. Spehr,1,b) and S. Herbold2,c)

1German Aerospace Center (DLR), Germany
2Institute of Computer Science, University of G€ottingen, Germany

ABSTRACT:
This paper presents an Expert Decision Support System for the identification of time-invariant, aeroacoustic source

types. The system comprises two steps: first, acoustic properties are calculated based on spectral and spatial informa-

tion. Second, clustering is performed based on these properties. The clustering aims at helping and guiding an expert

for quick identification of different source types, providing an understanding of how sources differ. This supports the

expert in determining similar or atypical behavior. A variety of features are proposed for capturing the characteristics

of the sources. These features represent aeroacoustic properties that can be interpreted by both the machine and by

experts. The features are independent of the absolute Mach number, which enables the proposed method to cluster

data measured at different flow configurations. The method is evaluated on deconvolved beamforming data from two

scaled airframe half-model measurements. For this exemplary data, the proposed support system method results in

clusters that mostly correspond to the source types identified by the authors. The clustering also provides the mean

feature values and the cluster hierarchy for each cluster, and for each cluster member, a clustering confidence. This

additional information makes the results transparent and allows the expert to understand the clustering choices.
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I. INTRODUCTION

Multiple noise-generating phenomena and mechanisms exist

in aeroacoustics (Howe, 2007; M€uller, 1979). To identify these

phenomena in processed experimental data, expert domain

knowledge and a detailed analysis of measurements are neces-

sary. For the localization and estimation of the sound power of

complex source geometries, such as planes, cars, or trains, beam-

forming is a reliable method (Merino-Mart�ınez et al., 2019).

Beamforming results in high-dimensional maps of the Power

Spectral Density (PSD) that are difficult and time-consuming to

analyze manually. Therefore, the resulting beamforming maps

are usually integrated over space and frequency areas to obtain

low-dimensional data such as spectra (Merino-Martinez et al.,
2019) or Overall Sound Pressure Levels (OASPL), which human

experts then analyze and interpret. For the identification of the

source types or source mechanisms, experts often rely upon the

spatial localization and meta-information, e.g., that sources are

located at a trailing edge and, thus, are identified as trailing edge

noise. For real-world vehicles or vehicle models, this information

can be missing or misleading, since the geometries of interest are

highly complex and result in a superposition of sound generating

mechanisms. Therefore, identifying aeroacoustic source types is

a complex, time-consuming task that requires experts to compare

the analyzed data to simplified, generic, and controlled reference

measurements. However, these reference measurements often do

not reflect the behavior of real-world geometries due to mis-

matched Reynolds numbers, installation effects, and object modi-

fications (e.g., tripping and empty nacelles in airframe models).

The goal of this paper is to overcome this obstacle by

introducing a system that supports experts in the process of

source identification by means of automated data processing

and machine learning. There are two major categories for

analyzing and structuring data: supervised learning and

unsupervised learning. Supervised learning models an

unknown function for known input data and a desired out-

come. The desired outcome must be known, i.e., the data

must be labeled with a ground truth (Bianco et al., 2019;

Mello and Ponti, 2018). However, the aeroacoustics of air-

frame noise and complex aircraft models is a field where it

is not feasible at the moment to obtain a ground truth due to

the complexity of sound generating mechanisms, such as

turbulence-induced noise at high Reynolds numbers. For

seemingly simple mechanisms like the shear layer induced

noise of a jet, there exists no scientific consensus on the

exact mechanism that is responsible for the observed far-

field sound (Karabasov, 2010). Additionally, there is not yet

enough data of complex, real-world aircraft models to

employ supervised machine learning, since the wind tunnel

measurements are costly and both model geometries and

results are often confidential. Therefore, supervised learning

is currently not a suitable approach for the presented task.

Instead, unsupervised learning will be used in this paper

to predict similar source types or source mechanisms, which
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b)ORCID: 0000-0002-2744-3675.
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is called clustering. While these clusters cannot replace the

manual analysis of the expert, they are supposed to help

with identifying similar sound source types, interpreting

their acoustic properties, and detecting typical and anoma-

lous behavior. Such a method is referred to as an Expert

Decision Support System (EDSS). Bioacoustics in coral

reefs (Ozanich et al., 2021) and the structural analysis of

wind turbine bearings via their emitted sound (Ben Ali

et al., 2018) are examples for unsupervised learning, as the

task of labeling requires either knowledge that is unavailable

or too much time and resources (e.g., the turbines would

have to be dissembled to obtain a ground truth). The sounds

can be processed and presented to the clustering algorithm

in many forms. However, since unsupervised learning not

only models the function but also estimates an outcome, it is

important that the variance within the data representation

makes the desired clustering choice likely; e.g., to success-

fully cluster sounds of different animals, the data variance

between the animals must be greater than the variance due

to changes between the locations the sounds were recorded

at. Otherwise, the clustering will result in clusters of differ-

ent recording locations instead of different animals. This is

achieved through data preprocessing, which includes the

reduction of the data’s dimensionality (e.g., the OASPL of a

sound instead of time-domain data), and the reduction of

complexity (e.g., using the PSD instead of the time-data).

This preprocessing step and careful selection and definition

of calculated properties with the goal to obtain a representa-

tion of the underlying data suitable for the clustering is

called “feature engineering.”

The paper is structured as follows. We use CLEAN-SC

(Sijtsma, 2007) beamforming maps (Merino-Mart�ınez et al.,
2019) of the scaled air-frame models of a Dornier 728

(Do728) (Ahlefeldt, 2013) and an Airbus A320 (A320)

(Ahlefeldt, 2017) as example data, featuring multiple aeroa-

coustic source types. We employ the Source Identification

based on spatial Normal Distributions (SIND) (Goudarzi

et al., 2021) approach to identify individual sources and

obtain their spectra from the beamforming maps. We

explain typical aeroacoustic properties and derive corre-

sponding features, discuss their usefulness, and propose

mathematical definitions. We then cluster the sources in the

obtained feature space using HDBSCAN (Campello et al.,
2013). We present a manual identification of the airframe

source types with exemplary spectra and our decision

choices to the reader, which allows us to compare the result-

ing clusters to our source categories. We then evaluate

which clusters are meaningful and correspond to our source

categories, derive a corresponding confusion matrix, and

calculate a clustering accuracy based on them.

The method reported in this paper was originally pre-

sented at the AIAA Aviation 2020 conference (Goudarzi

et al., 2020) as work-in-progress. This paper presents more

data (five different Reynolds numbers for the Do728, and

four for the A320 versus one for both models in the confer-

ence paper). It presents additional features, and some modi-

fied feature calculations, an in-depth analysis of the

proposed features, and a statistical analysis and discussion

of the clustering results.

II. DATASETS

The data used in the present paper consist of beamform-

ing measurements of two closed-section wind tunnel mod-

els: one is of a Do728 (Ahlefeldt, 2013) and one is of an

A320 (Ahlefeldt, 2017). Both models were observed at mul-

tiple Reynolds numbers hReiM, angles of attack a, and Mach

numbers M. For the Do728 model, the Mach-averaged

Reynolds numbers hReiM, the ambient pressures p0 and

cryogenic temperatures T are shown in Table I based on the

mean aerodynamic cord length D0 ¼ 0:353m. With the

dynamic viscosity lðTÞ and density .ðp0; TÞ of the medium,

the Reynolds number is

Re ¼ .ðp0; TÞMðT; uÞD0

lðTÞ : (1)

Values of aa ¼ ½1�; 3�; 5�; 6�; 7�; 8�; 9�; 10�� were chosen

for angle of attack for every Reynolds number configuration

and Mj ¼ ½0:125, 0.150, 0.175, 0.200, 0.225, 0:250� as Mach

number for every angle of attack. In total, the Do728 dataset

contains 5hReiM � 8a� 6M¼ 240 different flow configura-

tions. The array consisted of 144 microphones at an oval

aperture of 1:756 m� 1:3 m and a data sample frequency of

fS ¼ 120 kHz was used.

The A320 model was observed at aa ¼ ½3�; 7�;
7:15�; 9�� for every Reynolds number configuration, and

Mj ¼ ½0:175, 0.200, 0:225� for every angle of attack. The

Mach averaged Reynolds numbers, the ambient pressures p0

and cryogenic temperatures T are shown in Table II based

on D0 ¼ 0:353 m. In total, the A320 dataset contains 48 dif-

ferent flow configurations. The array consisted of 96 micro-

phones at an aperture of 1:06 m� 0:5704 m and the data

were recorded at fS ¼ 150 kHz. For both datasets the Cross-

Spectral density Matrices (CSM) were calculated using

Welch’s method with a block size of 1024 samples and 50%

overlap which resulted in around 7000 block averages for

the Do728 and 9000 averages for the A320. The beamform-

ing was performed using conventional beamforming

TABLE I. Reynolds configurations of the Do728 dataset.

configuration D1 D2 D3 D4 D5

hReiM½1� 106� 1.4 1.8 2.5 3.8 10.6

T½K� 290 250 200 150 100

p0½1� 105Pa� 1.0 1.0 1.0 1.0 1.0

TABLE II. Reynolds configurations of the A320 dataset.

configuration A1 A2 A3 A4

h Re iM½1� 106� 1.4 5.1 5.1 19.9

T½K� 310 311 125 120

p0½1� 105Pa� 1.10 3.99 1.15 4.19
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(Merino-Mart�ınez et al., 2019) and CLEAN-SC deconvolu-

tion (Sijtsma, 2007) on a regular grid with a focus point res-

olution of Dx1 ¼ Dx2 ¼ 5� 10�3m. The focus plane for

both models is around Dx3 � 1m away from the array and

covers around 2m2, which results in a total of 8 �105 focus

points per beamforming map.

III. METHODOLOGY

This section presents the methodology of the EDSS.

First, the procedure is presented and compared to a manual

source analysis. Second, the definition of an aeroacoustic

source in this context is provided. Third, aeroacoustic prop-

erties are discussed and corresponding features are derived.

Fourth, the clustering process based on the features is

described. We will use italic indices to indicate the dimen-

sionality of the variables. For averaging a variable v over its

i-th dimension, we use hviii,

hviii ¼

XI

i

vi

I
; (2)

and for the corresponding standard deviation riðviÞ,

riðviÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXI

i

ðvi � hviiiÞ
2

I

vuuut
: (3)

A. Procedure

Figure 1 compares the proposed EDSS process to a

standard manual source analysis process for beamforming

maps PSD ð~x; fi;Mj; aa;ReeÞ, which typically includes spa-

tial variables ~x, multiple frequencies or frequency intervals

fi, angles of attack aa, Mach numbers Mj, and Reynolds

numbers Ree. In the manual process, multiple regions of

interest (ROI) Rrð~xÞ are defined and spatially integrated to

derive acoustic spectra PSD ðRr; fi;Mj; aa;ReeÞ. This first

step is already a challenging task since the ROIs must only

contain the individual sources to obtain individual source

spectra, which can be only verified using the resulting spec-

tra. This often requires several iterations, as described in the

following. After definition, the ROI spectra are analyzed,

which often requires expert knowledge and intuition. Based

on the analysis the ROI are then redefined (e.g., if two sepa-

rate sources are detected within a ROI). Based on the spectra

at different Mach numbers, expert knowledge, intuition, and

meta-information (e.g.,the source is located at a trailing

edge and thus, must be trailing edge noise) aeroacoustic

properties are derived, and the source type is then identified

or vice versa. The main challenge for this process is the high

dimensionality of the properties PkðRr; fi;Mj; aa;ReeÞ and

the requirement for an iterative approach.

In comparison, the EDSS aims at automating most of

these tasks. First, the ROI definition Rð~xÞ and spectra gener-

ation were shown to have the capacity to be automated using

the SIND method (Goudarzi et al., 2021). The EDSS then

defines a source Srae for each ROI Rr, at each angle of attack

aa, and at each Reynolds number Ree. This results in multi-

ple sources Srae½PSDðfi;MjÞ�, for which aeroacoustic fea-

tures FkðSraeÞ are then calculated. Finally, the sources are

clustered based on the k-dimensional feature space with the

process bcðFkÞ which results in a cluster prediction for each

source CcðSraeÞ. This provides c-dimensional prediction

information (each source is assigned to a cluster). Also,

additional information about the similarity of source groups

based on their cluster-averaged features is provided. The

source types can then be identified manually based on the

expert’s knowledge and the low-dimensional information

provided by the EDSS.

B. Source definition

An aeroacoustic source emerges either from the interac-

tion of an obstacle placed in a flow, e.g., a cylinder

(Zdravkovich, 1997) or from the flow itself, e.g., jet noise

(Lighthill and Newman, 1952). When we observe a source

at a specific flow speed or angle of attack, the observed

source is often a realization of one or more underlying phys-

ical mechanisms. These mechanisms often result in

FIG. 1. (Color online) Comparison of the evaluation process of wind tunnel

beamforming measurements. Left: a standard process using manual analy-

sis. Right: the proposed Expert Decision Support System. Manual process-

ing steps are displayed in blue while automatic steps are displayed in red.

The resulting variables of each step are displayed in green. The indices indi-

cate the dimensionality of these variables.
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observations that change continuously over variations of

flow parameters such as the Mach or Reynolds number. To

distinguish between different source mechanisms, we have

to identify the underlying parameters for which the source

mechanism is self-similar. The observable variables depend

on the measurement matrix in controlled wind tunnel experi-

ments. They can be the angle of attack a, wind speed u,

Mach number M, temperature T, and ambient pressure p0.

The variation in pressure and temperature changes the

Reynolds number, the variation of the wind speed, and the

temperature changes the Mach number. Wind tunnel facili-

ties often use scaled models, increased total pressures, and a

lowered temperature to achieve high, real-world Reynolds

numbers (Ahlefeldt, 2013). Thus, the result of beamforming

in wind tunnels is a high-dimensional sound power map

PSDð~x; f ;MðT; uÞ; a;ReðT; u; p0ÞÞ.
A basic assumption in aeroacoustic source modeling is

that small changes in subsonic Mach numbers do not alter

the source mechanism (Howe, 2007). Also, a source may

exist in extended spatial areas or frequency intervals, for

instance, the sound generated from vertices in K�arm�an’s

vortex street (Prandtl and Tietjens, 1957; Zdravkovich,

1997). Sources may have a frequency-dependent spatial

location and shift their peak frequencies with changing

Mach number. One example is jet noise where the location

of dominant sound generation shifts downstream and the

peak frequency decreases with increasing Mach number,

while the PSD level increases (Lighthill and Newman,

1952). However, a normalization of the PSD or frequency

using the Mach number reveals that the spectrum shape,

Mach-normalized peak frequencies, and Mach-normalized

PSDs collapse (Quinlan and Krane, 1996). This is referred

to as self-similarity. The underlying physical sound-

generating mechanism has not changed, we only observe a

different realization of the source mechanism. However,

source mechanisms can change completely for large varia-

tions of their Reynolds numbers. One example of this is the

radiated acoustics from a flow around a cylinder

(Zdravkovich, 1997), where the flow properties may change

due to, for instance, the transition from a laminar to a turbu-

lent flow. Thus, only small subsonic Mach number changes

are considered. All other variations such as the angle of

attack a or changes in geometry may alter the dominant

source mechanism abruptly (e.g., slat tones and flow separa-

tion in airframe noise may appear). We treat these variations

as potentially different source mechanisms.

Since we are interested in clustering the sources accord-

ing to their underlying physical mechanisms rather than

clustering them by their dominance, we need to analyze the

scaling behavior over Mach number and the similarity laws

(Howe, 2007) rather than absolute levels at specific Mach

numbers. Therefore, we define the properties of a source as

follows. First, a source is connected to a spatial region Rð~xÞ.
Second, when a source is observed at a different Mach num-

ber, it is still the same source. Third, a source may be

observed for small variations of the Reynolds number due to

the change of the Mach number. A large variation of the

Reynolds number to changes in temperature or pressure

results in a different source. Fourth, any change of the angle

of attack results in a different source. Based on this defini-

tion a sound source’s PSD, obtained from the spatially inte-

grated ROI, possesses the free variables PSDðf ;MÞ at a

fixed hReiM and a. For example, a ROI Rð~xÞ that was identi-

fied by SIND within the Do728 beamforming maps is

treated as unique sources for each angle of attack and Mach

averaged Reynolds number (which results in 8a� 5hReiM
¼ 40 individual sources for any identified spatial ROI),

each represented by six spectra at different Mach numbers

M ¼ ½0:125;…; 0:250�. Since we assign multiple spectra of

measurements at different Mach numbers to one source, we

can derive its acoustic properties not only from the individ-

ual spectra but from the changes over Mach number or as an

average property of the spectra. This has the advantage, that

the Mach-normalized features of different datasets are com-

parable despite their measurement at different Mach num-

bers. Additionally, the averaging reduces the uncertainty of

the feature estimation.

C. Feature engineering

We require a set of features that describe the aeroacous-

tic properties of a source for clustering. For optimal cluster-

ing results and interpretability of the results we require a

feature-set that meets the following conditions:

• All features together must unambiguously describe a

source or its mechanism.
• A feature must describe a basic property of a source and

must provide additional information.
• The calculation of a feature must be automatable and

robust.
• A feature must be represented by a single numerical

value.
• A feature must correspond to a physical property.

In real-world applications, it is typically not possible to

fulfill these requirements completely. Additionally, it can

only be analyzed how well the introduced features meet

these requirements in the context of the observed sources. In

the following section, we identify aeroacoustic properties

and break them down to numerical features in the subse-

quent sections. A complete list of the features is given in

Table III. We will present the resulting feature values in the

results section and discuss how well the proposed features

meet the conditions in Sec. VI.

1. Broadband self-similarity

An important property of any aeroacoustic source is the

self-similarity or scaling behavior over increasing Mach

number. An acoustic spectrum that exhibits self-similarity

over the Strouhal number indicates a physical source mecha-

nism that is connected to the flow such as turbulence-

induced noise (Lighthill and Newman, 1952). With the

speed of sound a, the Strouhal number is defined as
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St ¼ fD0

Ma
: (4)

Spectra collapsing over the use of Helmholtz number,

He ¼ fD0

a
; (5)

indicate a mechanism connected to acoustic resonances

(M€uller, 1979) or radiation effects (Michalke, 1977) due to

spatial coherence of a non-compact source. If a source is

self-similar over one of these frequency types (we refer to

the absolute frequency, the Helmholtz number, and the

Strouhal number as frequency types), there is a linear depen-

dency between the PSD levels over frequency at different

Mach numbers. Thus, we calculate the Pearson correlation

coefficients qjj0 between all spectra at different Mach num-

bers Mj and Mj0 ,

qjj0 ¼
XI

i

ðPSDðMj; fiÞÞ � hPSDðMj; fiÞiiÞ
�

�ðPSDðMj0 ; fiÞÞ � hPSDðMj0 ; fiÞiiÞ
�

� riðPSDðMj; fiÞÞriðPSDðMj0; fiÞÞ
� ��1

: (6)

Note that for the calculation of Eq. (6) using the Strouhal or

Helmholtz number, the spectra have to be interpolated on

the same Strouhal or Helmholtz number vectors for different

Mach numbers. For the results presented in this paper, we

use linear interpolation on a logarithmic Strouhal and

Helmholtz number vector with 12 bins per octave. Since the

correlation matrix is symmetric and the diagonal entries are

unity, we determine the Mach average corr and standard

deviation corrr of the correlation coefficients using the

upper triangular matrix j > j0 with J ¼ jMjj,

corr ¼ 2

JðJ � 2Þ
X
j>j0

qjj0 ; (7)

corrr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

JðJ � 2Þ
X
j>j0
ðqjj0 � corrÞ2

s
: (8)

Most aeroacoustic spectra decay in SPL over frequency

and if this decay is stronger than local structures or peaks in

the spectra, this can result in strong correlations for fre-

quency types over which the spectra are not self-similar.

However, the correlation matrix qjj0 then often exhibit great

variance. Thus, a mean correlation corr is not an optimal

definition for the self-similarity. It can be improved by tak-

ing its standard deviation corrr and the mean p-value �p into

account. The p-values are averaged as shown in Eq. (7) and

represent the reliability of the correlation estimation. Due to

the beamforming process in combination with CLEAN-SC,

the discrete spectra often contain missing values. If we

drop the corresponding frequencies f where PSDðM; f Þ
¼ �1dBHz�1 before the calculation, the standard devia-

tion, and the p-value will increase drastically due to the

decreasing sample size when the spectra are not self-similar.

Using these properties, we introduce the final broadband

self-similarity (scal),

scal ¼ ðcorr � corrrÞð1� �pÞ; (9)

which can be calculated over all frequency types separately.

This definition strongly penalizes a high p-value and a large

variance in the correlations.

2. Frequency normalization exponent

As stated in Sec. III C 2 a spectrum scales either over

the Strouhal or the Helmholtz number. However, we

observe in the presented data that spectra that are supposed

to scale over the Strouhal number are often not perfectly

aligned as depicted in Fig. 1(a). In this rare case of multiple

cryogenic measurement conditions, both datasets allow us to

observe spectra at constant absolute Reynolds number over

increasing Mach number (at decreasing temperatures and

increasing pressure). Using spectra spectra at different Mach

numbers from different Reynolds configurations so that the

absolute Reynolds number is kept constant, the spectra are

perfectly aligned (not depicted here). Thus, the increase in

Reynolds number over Mach number at constant pressure

and temperature may cause sources to decrease or increase

the Strouhal numbers dependence on the Mach number.

TABLE III. Table of all aeroacoustic properties, their corresponding fea-

tures, their variables, equations, if they are used logarithmically with

log ðjvj þ 1Þ, and their (log) value range.

property feature var. Eq. log range

Self-similarity scal. over St number scal(St) (9) No ½0; 1�
scal. over He number scal(He) (9) No ½0; 1�

freq. norm. exp. m? (11) No ½0;1½
Power scaling M scal(St) nSt (15) No ½0;1½

M scal(He) nHe (15) No ½0;1½
Tonality Number of tones bPn (17) Yes ½0;1½

Tone St shape kSt (18) Yes ½0;1½
Tone St scale hSt (18) Yes ½0;1½
Tone St loc lSt (18) Yes ½0;1½

Tone width shape kw (18) Yes ½0;1½
Tone width scale hw (18) Yes ½0;1½
Tone width loc lw (18) Yes ½0;1½

Tone prom shape kp (18) Yes ½0;1½
Tone prom scale hp (18) Yes ½0;1½
Tone prom loc lp (18) No ½0;1½

scal. over St number scalp(St) (21) No ½0; 1�
scal. over He number scalp(He) (21) No ½0; 1�

Tone intensity propp (22) No ½0; 1�
Source loc. Source movement Dl (23) No ½0;1½
Spatial dist. Source compactness A (24) No ½0;1½

Source shape Rr (25) Yes ½0;1½
Spectrum shape Regression slope bs (26) Yes ½0;1½

Regression r2-value r2 (28) no ½0; 1�
Avg. St number St (30) yes ½0;1½
std. St number Str (31) yes ½0;1½

PSDmax St number StLmax (32) yes ½0;1½
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Since cryogenic measurements are rare and expensive, we

assume that many datasets are observed at constant pressure

and temperature (i.e., different absolute Reynolds numbers)

and are affected by this phenomenon. To overcome this

problem, we define a modified normalized frequency bf that

compensates for this altered Mach dependency by introduc-

ing the generalized frequency normalization exponent m.

We then define the modified normalized frequency as

bf ¼ fD0

Mma
: (10)

Note that this normalized frequency is a generalization of

the Helmholtz number (for m¼ 0) and the Strouhal number

(for m ¼ 1). For convenience, we will speak of a modified

Strouhal number if m � 0:5. To obtain the generalized fre-

quency normalization exponent, we optimize the collapse of

the spectra by maximizing its broadband self-similarity (see

Sec. III C 1). Figure 2 shows the comparison of the normal

Strouhal number [Fig. 2(a)] and the modified Strouhal num-

ber with m ¼ 0.72 [Fig. 2(b)]. Figure 2(c) shows the mean

spectra correlation corr (black line), and its standard devia-

tion corrr (gray area) over the modification exponent m. The

blue line is the mean p-value �p, indicating the reliability of

the correlation estimation. The optimal value m? (shown

with the red x) is achieved at the global maximum of the

self-similarity, see Eq. (9),

m? ¼ argmax
m2 0;1½ �

ðscalðmÞÞ: (11)

In the example of these slat tones, the increase in

Reynolds number results in a weaker Mach dependency of

the normalized frequency than a regular Strouhal number.

The following acoustic properties are derived from

spectra at different Mach numbers, which can be displayed

over the Strouhal number, the Helmholtz number, or the

introduced modified normalized frequency. Since aeroa-

coustic experts are used to analyzing spectra displayed over

Strouhal and Helmholtz number, we calculate features from

spectra displayed over both Helmholtz and modified

Strouhal number separately. If a spectrum is dominated by a

Helmholtz number scaling mechanism, the frequency modi-

fication exponent will result in values m � 0. To present

spectra over both Helmholtz and (modified) Strouhal num-

ber, we have to find a local maximum of the self-similarity

function around mSt � 1 to account for spectra that include

minor, Strouhal number scaling mechanisms. To do so, we

run a standard peak detection over the self-similarity func-

tion scalðmÞ to find a local maximum ~m � 0:5 with a peak

prominence bPp � 0:1. If none is found and m? < 0:5, we

simply set mSt ¼ 1 to obtain a Strouhal number,

~m ¼ peak
m 2 0:5;1½ �

maxðbPpÞ � 0:1

ðscalðmÞÞ; (12)

mSt ¼
m? if m? > 0:5;

~m if m? � 0:5;

1 else:

8><>: (13)

3. Sound power scaling

The power of aeroacoustic noise generally increases

with increasing Mach number. A prominent example is jet

noise for which Lighthill derived the M8 scaling law

(Lighthill and Newman, 1952). Thus, when doubling the

Mach number, the PSD will increase by 10 log10ð28Þ
¼ 24 dB. The power scaled PSDs (dPSD), with the power

scaling exponent n, are given by

dPSDðfi;MjÞ ¼ PSDðfi;MjÞ � n10 log10ðMjÞ: (14)

Conventionally, a regression on the OASPL (which is the

sound power integrated over frequency) or peak levels of

Eq. (14) is used to determine n. This does not always work

for spectra from beamforming maps, since the microphone

array aperture in combination with deconvolution acts like a

high-pass filter at an absolute frequency. This is problematic

when scaling over the Strouhal number (and Helmholtz

number at different temperatures and pressures). It effec-

tively creates a Mach dependent low-cut filter, which in

combination with a typical SPL decrease over frequency for

aeroacoustic sources, results in a wrong OASPL and thus

scaling exponent. Instead, we minimize the mean distance

between all power scaled spectra dPSDðfi;MjÞ over fre-

quency bin-wise with a standard bounded minimization

algorithm. To calculate a distance between multiple spectra

at once we use the standard deviation r of the spectra at

every discrete frequency. Since parts of a spectrum with

a high SPL are often considered more important for the

scaling, we can weight the standard deviations at every fre-

quency with the Mach averaged spectrum power

FIG. 2. (Color online) Do728, Re ¼ 1:4� 106, slat tones at a ¼ 8�.
Comparison of source spectra at different Mach numbers over (a) normal

Strouhal number and (b) modified Strouhal number, see Eq. (10), with

m¼ 0.74; (c) shows the mean and standard deviation r of the Pearson corre-

lation coefficient of the source spectra at different Mach numbers over the

variation of the modification exponent, the mean p-value, and the resulting

self-similarity (scal), see Sec. III C 1. The modification exponent m¼ 0.74

achieves the optimal self-similarity, marked with an x.
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hPSDðfi;MjÞijMj
. The hyperparameter j of this weight deter-

mines by how much we want to prefer the scaling of high

levels. Thus, we minimize

min
0�n<1

X
i

rjðPSDðfi;MjÞ � n10 log10ðMjÞÞhPSDðfi;MjÞijj
h i

;

(15)

with n; j 2 R � 0. For the calculation of a reliable power

scaling exponent at least spectra at three different Mach

numbers should be used. A large variation in Mach number

also increases the scaling’s reliability. Figure 3 shows

the resulting power scaling for a slat/slat track source and

j¼ 10 over modified Strouhal number and Helmholtz num-

ber. Note the different scaling behavior over Strouhal and

Helmholtz number for the low and high-frequency part of

the spectrum and that the OASPL scaling nOASPL obtained

by a linear regression neither matches the Helmholtz nor the

Strouhal scaling exponent correctly, as described above. In

Fig. 7, more examples of scaled PSDs with j ¼ 10, which

was used for all results presented in this paper, are

displayed.

4. Tonality

Accounting for the tonal behavior of the sources results

in less straightforward feature descriptions since the tonal

peaks vary from source to source and within a source for dif-

ferent Mach numbers but their properties must be captured

by a finite amount of features, see Sec. III C. These proper-

ties are the peak width intervals bPw, peak prominences bPp,

peak frequencies bPf , and the number of peaks bPn. First, we

run a standard automated peak detection over the spectra,

which results in a set of peak prominences PpðMjÞ, peak

widths PwðMjÞ, and peak frequencies PfðMjÞ for every

Mach number Mj. Additionally, we define sets of frequency

bins P~f ðMjÞ that include all frequency bins, that lie within

the peak width intervals PwðMjÞ,

P~f ðMjÞ ¼ ffijs:t: fi belongs to a peak for Mjg: (16)

The number of peaks bPn is defined as the Mach averaged

number of elements in the sets,

bPn ¼ hjPpðMjÞjij: (17)

As stated in Sec. III C, we have to break down the properties

of the peaks to single value features. We do so by describing

the distribution of the peaks’ properties instead of using the

individual peaks’ properties directly. Naturally, peaks with

lower prominence appear more often than peaks with very

high prominence in Pp. This assumption is also used for the

peak width in Pw. This behavior can be modeled using a

gamma distribution (Abramowitz, 1974). With the gamma

function CðkÞ, the Probability Density Function (PDF) c of

the gamma distribution over a variable v with a shape k,

scale h and location l is

cðv; k; h; lÞ ¼
ðv� lÞk�1

exp � v� l

h

� �
hkCðkÞ

for v; k; h; l � 0:

(18)

For the peak frequency locations in Pf , we found that a

lognormal distribution fits most of the sources best. The dis-

tributions of these properties have unknown shape (standard

deviation), scale (distribution median), and location (distri-

bution offset) parameters which can be approximated from

any number of samples greater than one by fitting the

gamma or lognormal distribution to the data with standard

fitting methods. The shape, scale, and location for peak

width, peak prominence, and peak frequency are used as

comparable feature values, independent of the number of

tones in the PSDs and the number of different Mach num-

bers. Figure 4 shows the peak detection and the correspond-

ing distributions for all Mach numbers of a Do728 slat tone

source. We set a lower threshold of 3 dB for the peak promi-

nence to prevent the algorithm from detecting lots of irrele-

vant low-level peaks which dominate the distributions. We

set the feature values to zero if only one or fewer tones are

detected.

To determine how well the prominent peaks scale over

Strouhal or Helmholtz number (scalp) we average the ratio

of how many peaks overlap at every detected peak fre-

quency interval. Working with logarithmically spaced, dis-

crete frequencies fi, we introduce two sets. Ei are I sets, each

FIG. 3. (Color online) Do728 slat/slat

track source at Re ¼ 1:4� 106; a ¼ 3�.
Comparison of the power scaling over

modified Strouhal (m¼ 0.9) and

Helmholtz number to collapse the PSDs

with Eq. (14). The scaling exponents are

nSt ¼ 4:2; nHe ¼ 5:3; nOASPL ¼ 6:3.
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containing up to J Mach numbers for which the frequency

bin of the corresponding spectrum lies within a peak inter-

val. bI is a single set that contains the frequency indices i for

which at least one spectrum features a peak,

Ei ¼ fMjj so that fi 2 P~f ðMjÞg; (19)

bI ¼ fij9Mj so that fi 2 P~f ðMjÞg: (20)

The resulting scaling of the tones is then the ratio of spectra

that share a peak at the same frequency to the total number

of spectra at different Mach numbers J, averaged over all

frequency bins i for which at least one peak was detected,

scalp ¼
1

jbIjX
i2bI
jEij � 1

J � 1
: (21)

The minus ones ensure a soft feature value 0 � scalp � 1

for the modified Strouhal and Helmholtz number, since each

Ei contains at least one element. Finally, we introduce the

tonal intensity propp, defined as the Mach averaged ratio of

tonal SPL to total SPL. It expresses how much percent of

the energy in the spectra is caused by tones,

propp ¼

X
fi2PwðMjÞ

PSDðfi;MjÞ

X
i

PSDðfi;MjÞ

* +
j

: (22)

5. Source location dependency on the Mach number

The spatial location of some aeroacoustic sources may

change with the Mach number. An example of a moving

source would be a flow detachment, at which the sound gen-

erating eddies move further downstream with increasing

Mach number or jet noise, while cavity noise would remain

at the same location. Figure 5(a) shows the variation of

source positions on the Do728 with increasing Mach num-

ber. For a numeric feature description, we calculate the posi-

tional change of the source with increasing Mach number

and call it the source movement. We define the source

movement Dl as the mean movement of the local source

position ~x, normalized by the change in Mach number,

shown in Fig. 5(b). A limitation of this feature is that it

assumes the monotonous movement of the source in one

direction with the Mach number,

Dl ¼ j~xj �~xj�1j
Mj �Mj�1

* +
j

for j � 2: (23)

6. Spatial source distribution

Aeroacoustic sources can be spatially distributed, such

as line or volume sources. We use the sources’ spatial PDFs

obtained with SIND to describe this behavior. SIND approx-

imates the spatial source distributions with two-dimensional

(2D) normal distributions, described by the standard devia-

tions rxi
. We define the integrated, normalized PDF area A

as a feature for the spatial compactness of the source,

A ¼
ð

x1

ð
x2

PDFðx1; x2Þ
jjPDFðx1; x2Þjj1

dx2dx1

¼ 2prx1
rx2
: (24)

We define the ratio of the PDFs standard deviations rxi
as an

indicator for line sources with

Rr ¼ max
rx1

rx2

;
rx2

rx1

� �
� 1: (25)

Thus, Rr � 0 indicates a point or sphere-like source while

an increasing Rr indicates a line source.

FIG. 4. (Color online) Do728, Re

¼ 1:4� 106, slat tones at a ¼ 8�. Top,

the spectra and the automatically

detected peaks, depicted with an x.

Bottom, a normalized histogram and

the fitted PDF of the (a) peaks promi-

nence, (b) peak width, and (c) peak

Strouhal number.
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7. Spectrum shape

To capture the general spectrum shape, we use a linear

regression L(f) for PSDðf Þ, which consists of two values: the

interception i0 of the line at f ¼ 0 Hz and the slope bs,

Lðf Þ ¼ bsf þ i0: (26)

The interception is an absolute value, varies with the Mach

number, and is, therefore, discarded. The slope is the

increase or decrease in the PSD level over the frequency.

Additionally, we use the regression’s r2-value, which

describes how well the linear regression explains the spec-

trum. A low r2 value indicates that the linear regression is

not capturing the movement in the spectrum well. Thus, it is

an indication of the waviness of the spectra. With the error e
of the regression model,

eij ¼ PSDð fi;MjÞ � Lð fi;MjÞ; (27)

the Mach-averaged r2 value is then calculated with

r2 ¼ 1�

X
i

eijX
i

ðPSDij � hPSDijiiÞ
2

* +
j

: (28)

Similar to the spatial source distribution, we define a

source distribution over frequency. Since we work on sparse

spectra which are not defined on all frequency bins, we use

the mean �f and standard deviation fr of the frequencies for

which the source PSD is real valued to capture the source’s

radiation frequency interval. With the sets Qj that contain

the real valued frequency bins fi for the spectra at Mach

number Mj,

Qj ¼ ffij such that PSDðfi;MjÞ 2 Rg; (29)

�f ¼ 1

J

X
j

1

jQjj
X
f2Qj

f

 !
; (30)

fr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J

X
j

1

jQjj
X
f2Qj

ðf � �f Þ2
 !vuut : (31)

Finally, we introduce the frequency fLmax for which the PSD

level has a maximum,

fLmax ¼ hargmaxiðPSDðfi;MjÞÞij: (32)

D. Source clustering

We employ unsupervised clustering that groups the

sources based on a distance metric in the introduced aeroa-

coustic feature space. We select Hierarchical Density-Based

Spatial Clustering of Applications with Noise (HDBSCAN)

(Campello et al., 2013; McInnes et al., 2017), which sup-

ports soft clustering without prior knowledge about the

number of clusters, i.e., an expectation of the number of dif-

ferent source types. HDBSCAN also provides a clustering

confidence. Since the distances between sources in a high

dimensional feature space become alike (Aggarwal et al.,
2001), the feature space must be reduced. The most promi-

nent dimensionality reduction technique is Principal

Component Analysis, which orthogonalizes the feature

space and sorts the dimensions based on their explained var-

iance. Then, dimensions with little statistical variance can

be discarded. For the presented method, we use a Kernel

Principal Component Analysis (KPCA) (Sch€olkopf et al.,
1998) with a Radial Basis Function (RBF) as a kernel. The

KPCA uses a nonlinear convolution kernel, which allows

the PCA to embed the feature space in a nonlinear manifold.

For dimensionality reduction, we retain 2r � 95% of the

explained variance by discarding the KPCA dimensions

with the least variance. Before using a PCA or KPCA, the

feature space must be normalized to zero mean and unity

variance. This normalization assumes that the features are

normally distributed. However, most of the features F are

FIG. 5. (Color online) Do728 (a) shows the source positions at Re ¼ 1:4
�106; a ¼ 10� (if the source is present at this configuration) for the given

Mach numbers. (b) Shows the mean movement of the sources calculated

with Eq. (23).
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distributed exponentially and are transformed to a log-space

prior to the KPCA with log10ðFþ 1Þ, see Table III. Thus,

the feature space is partially transformed into a log-space,

then normalized, then orthogonalized and reduced to 95%

explained variance using a KPCA, and then clustered using

HDBSCAN.

HDBSCAN requires a minimum sample size which

determines how many source members a cluster must have.

Smaller clusters are discarded as noise. We can determine a

reasonable sample size by examining the resulting cluster

numbers. With an increasing sample size, the resulting num-

ber of clusters first drops massively and then decreases only

slightly. Figure 6 demonstrates this for the Do728 dataset.

We pick the sample size after which the total quantity of

clusters nclusters only decreases slightly, in this case around

nsamples ¼ 7. This is sometimes referred to as the “elbow-

method” or “knee-method” (Thorndike, 1953). It is notewor-

thy that picking a bad sample size may result in sub-clusters

(splitting a cluster) or super-clusters (merging clusters), but

the overall results remain comparable. Thus, it can be help-

ful to start with a large sample size to obtain few clusters

which are manageable to analyze manually and then transi-

tion towards smaller sample sizes. We call the described

methodology for this EDSS “Clustering sources based on

their aeroacoustic features” (CRAFT).

IV. MANUAL SOURCE IDENTIFICATION

To visualize, analyze, and quantify the results of the

EDSS, we first manually identify source types and label the

sources in the Do728 and A320 datasets based on their spec-

tra and their self-similarity. The labels for the manually

identified source types are mainly chosen based on the sour-

ces’ spatial location. We also compare the source spectra to

each other to identify sub and super-categories. To make

this process transparent to the reader, we present in Fig. 7

exemplary Do728 spectra for the most common categories.

The sources in the left column are displayed over the modi-

fied Strouhal number and sources in the right column are

displayed over the Helmholtz number. We note that the

manual source type identification and label choices may be

ambiguous, contain errors, and misinterpretations. Also, we

emphasize that the source groups and corresponding labels

cannot be held as ground truth, since they have not been

obtained by independent researchers: • The slats feature Strouhal number scaling peaks with

overtones that decay in level and prominence with

increasing frequency [see Fig. 7(a)]. They are mainly

located at or between the slat tracks, see Fig. 5 source

locations 2, 4, 8, 9, 17, 20, 21, and 28.
• The slat tracks scale over Helmholtz number [see

Fig. 7(b)]. At high frequencies, they often exhibit a

Helmholtz scaling hump that is Mach number depen-

dent. In Fig. 5, they are at the source locations 2, 3, 4, 7,

8, 9, 11, and 16.
• The slat tones feature extremely dominant Strouhal num-

ber scaling small-band tones [see Fig. 7(c)]. They are
FIG. 6. (Color online) Do728, the figure shows the resulting numbers of

clusters from HDBSCAN over the minimum sample size parameter.

FIG. 7. (Color online) Do728, normalized spectra of the typical source

types: (a) slat, (b) slat track, (c) slat tone, (d) flap tone, (e) trailing flap side

edge, (f) leading flap side edge, (g) strake at low Reynolds number and high

angle of attack, (h) wind tunnel, (i) strake tone at high Reynolds number

and low angle of attack, (j) outer nacelle, (k) slat edge, (l) flap track, (m)

wing tip, and (n) slat resonance. The horizontal grid lines depict D20 dB.

The frequency modification exponents m, the Mach scaling exponents n,

and the corresponding angles of attack a and Reynolds numbers are given

in Table IV.
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mainly located at the slat positions, see Fig. 5 locations 4,

7, 9, 11, 16, 21, 22, 25, and 28.
• The flap (track) tones feature a small Helmholtz scaling

tone and are a sub-category of the flap track [see Fig. 7(d)].

In Fig. 5, they are at locations 23, 29, and 32.
• The trailing flap side edges (TFSE), Fig. 5 at location 12,

feature a prominent Strouhal scaling peak [see Fig. 7(e)].
• The leading flap side edges (LFSE), Fig. 5 at location 6,

feature a smaller Helmholtz scaling peak [see Fig. 7(f)].

At increasing Reynolds numbers, a second Helmholtz

number scaling peak emerges.
• The strakes feature a Strouhal number scaling hump [see

Fig. 7(g)]. It increases in intensity with increasing angle

of attack and disappears with increasing Reynolds num-

ber. In Fig. 5, they are at locations 18 and 26.
• The wind tunnel noise, Fig. 5 at location 31, scales over

Helmholtz number [see Fig. 7(h)]. It appears next to the

wing and is considered as a spurious noise source in this

measurement (Ahlefeldt, 2013).
• The strake tone, Fig. 5 at location 18, is a dominant

Strouhal scaling tone [see Fig. 7(i)]. It appears only at

high Reynolds numbers and low angles of attack and

decreases in intensity with increasing angle of attack. It is

a sub-category of the strake.
• The outer nacelle area, Fig. 5 source location 13, features

a broadband hump that scales over Helmholtz number

[see Fig. 7(j)].
• The slat edge is located close to the wing tip, Fig. 5 posi-

tion 10, and its noise scales over Strouhal number [see

Fig. 7(k)]. The spectrum level decays over frequency and

features an additional, low-level Helmholtz scaling hump

at high frequencies. It is a sub-category of the slat track.
• The flap tracks feature a low-level Helmholtz number

scaling hump [see Fig. 7(l)]. They are located in Fig. 5 at

locations 23, 29, and 32.
• The wing tip, Fig. 5 source location 27, features a

Strouhal number scaling hump [see Fig. 7(l)], that

increases in intensity with increasing angle of attack. The

spectra are often contaminated with wind tunnel noise.
• The slat (track) resonances exhibits strong, Helmholtz

number scaling peaks and are a sub-category of the slat

track, see Fig. 7(n)]. In Fig. 5, they are at the slat tracks 1,

and 5.

The fuselage (Fig. 5 location 19), nacelle track (appear-

ing only at very high Reynolds numbers at location 30 in

Fig. 5, scaling over Helmholtz number with a very high

Mach power exponent n � 7:02), inner slat gap (Helmholtz

scaling hump, similar to the LFSE, location 15 in Fig. 5),

and flap gap (location 24 in Fig. 5) are identified and named

based on their spatial appearance. Noise occurring at the

flap gap was caused by loose tape on the model during the

measurement. Additionally, the category slat/slat track is

introduced to account for various spectra that are located on

the slat or slat tracks but are ambiguous, e.g., the slat/slat

track shown in Fig. 3, containing some Strouhal number

scaling low-frequency peaks, and some Helmholtz number

scaling high frequencies.

The manual source type identification in the A320 data-

set is more challenging. The smaller microphone array

results in less reliable spectra, especially at low frequencies,

and due to the small variation in Mach number the correct

scaling behavior and scaling exponent are difficult to iden-

tify. Additionally, the typical spectra do not consistently

correlate with the spatial appearance of the sources, e.g., the

spectra are different for different flap tracks. Finally, the

sources are strongly affected by the large range of Reynolds

numbers which often result in sources that are transitioning

from one mechanism to another (see Fig. 8). Thus, there are

multiple sources that we assign the same label, but that fea-

ture different spectra (e.g., the fuselage, the slat tracks, and

leading flap side edge, see Fig. 7) , and vice versa. However,

many of the sources are similar to the one found in the

Do728 dataset (e.g., LFSE, TFSE, strake, strake tone, slat,

slat resonance, slat tone). In addition to the Do728 source

FIG. 8. (Color online) A320. The fig-

ure shows the Reynolds number effect

on the source types (a) leading flap

side edge at a ¼ 7�, M ¼ 0.175, (b)

high Strouhal number scaling tone at

a ¼ 9�, M ¼ 0.200, located on the slat

and flap, and (c) trailing flap side edge

at a ¼ 7�, M ¼ 0.200.

TABLE IV. Generalized frequency exponents m, Mach scaling exponents

n, angles of attack a, and Mach averaged Reynolds numbers hReiM for the

displayed sources in Fig. 7.

(a) (b) (c) (d) (e) (f) (g)

m 0.90 0.00 0.75 0.00 1.09 0.00 0.71

n 4.44 5.47 3.43 4.23 4.43 4.09 3.43

a [�] 3 5 9 9 3 5 9

hReiM ½1� 106� 1.4 1.4 1.4 1.4 1.4 10.6 1.4

hÞ iÞ jÞ kÞ lÞ mÞ nÞ
m 0.00 0.94 0.00 1.00 0.00 0.66 0.00

n 3.87 3.68 5.47 3.26 6.07 3.59 5.26

a [�] 10 3 5 10 3 9 1

hReiM ½1� 106� 2.5 10.6 1.4 10.6 1.4 1.8 1.4
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types, there exist multiple A320 sources on the slat and flap

that feature a high Strouhal number scaling tone (high St

tone) that increases in intensity with increasing Reynolds

number like the strake tone [see Fig. 8(b)].

V. RESULTS

The result section is separated into two parts. First, the

results of the aeroacoustic properties and features are pre-

sented. Then, based on the resulting feature space, the clus-

tering results are presented.

A. Aeroacoustic feature results

Figure 9 presents the distributions of exemplary fea-

tures for exemplary source types and compares them

between both datasets. The horizontal lines within the dis-

tributions display the 0.25, 0.50, and 0.75 percentiles. The

exemplary source types were chosen because they were

manually identified in Sec. IV with great confidence based

on their spectral features in Fig. 7 and they showed inter-

esting acoustical properties. The features were chosen to

cover the variety of aeroacoustic properties introduced in

Sec. III C.

Figure 9 shows the self-similarity over the modified

Strouhal number [FIG. 9(a)] and the Helmholtz number

[Fig. 9(b)], see Sec. III C 1. Based on the exemplary source

spectra in Fig. 7 and the aeroacoustic literature, we expect

the slat track, slat resonance, and leading flap side edge to

strongly scale over the Helmholtz number and the slat tone,

strake, trailing flap side edge, slat, and strake tone to

strongly scale over the (modified) Strouhal number. For the

slat tracks, the feature does not achieve satisfying results

since it wrongly predicts a strong self-similarity over the

Strouhal number for both datasets. The reason for this is

the strong decay in SPL over frequency, which dominates

the correlation stronger than the local spectral features such

as tonal peaks or humps. For the Do728 strake tones, a low

Strouhal self-similarity is wrongly predicted. This is due to

the inclusion of the p-value in Eq. (9), which becomes large

for small-band sources. For the A320 slat tone and LFSE

the feature is not robust and results in a large range of val-

ues. The expected self-similarity over the Helmholtz num-

ber is well captures in Fig. 9(b). This is also true for

Strouhal number scaling slat sources with additional

Helmholtz scaling high-frequency content, see Fig. 8(a) at

100 � St � 200.

FIG. 9. (Color online) Violin plot com-

parison of the A320 (blue) Do728

(orange) for exemplary source types

and exemplary features from Table III.

(a) Shows the broadband self-

similarity over the modified Strouhal

number, see Sec. III C 1. (b) Shows

the broadband self-similarity over the

Helmholtz number. (c) Shows the

Mach power scaling over the modified

Strouhal number, see Sec. III C 3. (d)

Shows the generalized frequency mod-

ification exponent, see Sec. III C 2. (e)

Shows the logarithmic number of

tones, and (f) shows the gamma distri-

bution’s logarithmic scale of the tone

prominence, see Sec. III C 4. (g) Shows

the r2-value of the linear regression of

the spectrum, see Sec. III C 7, and (h)

shows the logarithmic spatial source

shape, see Sec. III C 6.
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Figure 9(c) shows the Mach power scaling over the

modified Strouhal number. Similar power scalings around M
scal(St)� 3:73 (averaged over the displayed source types)

are observed. This is expected as aeroacoustic noise is

known to scale within a small range (e.g., M4 for monop-

oles, M6 for dipoles, and M8 for quadrupoles), depending on

the source mechanism. However, the variance within the

source types often exceeds the variance between the source

types. Also, as seen for the trailing flap side edge the Mach

scaling can differ for the same source type for different data-

sets. At this point, it is not clear if this is caused by the

assumptions of the method (e.g., ignoring the source direc-

tivity) or by the different model geometries.

Figure 9(d) shows the generalized frequency normaliza-

tion exponent m, see Sec. III C 2. Most of the slat tracks and

slat resonances show an exponent around m � 0. This indi-

cates a Helmholtz scaling and corresponds to the presented

self-similarities. For both datasets, there are two groups of

LFSE, one that features m � 0, and one that features m � 1.

For the Do728 strakes, a mean exponent m � 0:79 is

observed, for the A320 strakes m � 0:95. For the Do728

TFSE m � 1:13 is observed, for the A320 m � 1:06. For the

Do728 slat m � 0:78 is observed, for the A320 m � 0:72.

Figure 9(e) shows the Mach averaged occurrence of

tones (logarithmic), see Sec. III C 4. Some source types fea-

ture few tones, i.e., the strake and strake tone, some source

types feature many tones, i.e.,the slat tones. Figure 9(f)

shows the corresponding scale parameter of the tone promi-

nence distribution (logarithmic). A large scale parameter

indicates that the distribution is spread out, including tones

with small and large prominence. A small scale parameter

indicates that all tones have a similar prominence. Both

datasets show similar distributions for the features.

Generally, the features correspond to our expectations.

However, the gamma distribution approximation fails for

sources that contain only one prominent tone, such as the

Do728 strake tone sources.

Figure 9(g) shows the spectrum shape r2 based on a lin-

ear regression, see Sec. III C 7. For the Do728 the distribu-

tions of the strake, the TFSE, and the strake tone are spread

out compared to the A320 distribution. Overall, they show

similar trends. The feature mainly highlights the fact, that

many aeroacoustic sources are broad-band sources with a

linear decay in SPL over logarithmic frequency and cor-

rectly identifies small-band sources such as the strake and

strake tone.

Figure 9(h) shows the source shape (logarithmic). A

value close to zero indicates a point source, an increasing

value indicates a line source. The results directly depend on

the output of SIND, which correctly identified the slat track,

LFSE, strake, and TFSE as point-like sources. The Do728

slat was correctly identified as a line-like source. However,

the A320 slats were wrongly identified as point-like sources.

While SIND yielded overall comprehensible results, on

some occasions sources were wrongly spatially separated or

combined; e.g., the slat tones sometimes appear on slat track

positions and, thus, are identified as point-like sources while

they should be line-like sources (Dobrzynski and Pott-

Pollenske, 2001).

Figure 10 shows a Pearson correlation coefficient heat-

map for the Do728 feature space. On the top, a feature hier-

archy is displayed based on hierarchical clustering with a

correlation distance metric based on the Unweighted Pair

Group Method with Arithmetic mean (UPGMA) algorithm.

This hierarchy shows which features are similar to each

other based on the displayed correlations to all other fea-

tures. The heatmap and hierarchy show that many of the

introduced features correlate strongly, especially features

that were introduced together to cover an aeroacoustic prop-

erty such as tonality, or self-similarity. The feature hierarchy

shows that these features originate from the same branch.

From left to right, the first major branch includes the linear

regression’s slope (log), the source movement, the general-

ized frequency exponent, and the source compactness. The

first three features correlate negatively with the features that

correspond to the tonality and form a sub-branch. The second

main branch on the right contains all other features. Its left

sub-branch contains the Mach scaling over Strouhal number,

and Helmholtz number, as well as the linear regression’s

FIG. 10. (Color online) Heatmap of all Do728 feature Pearson correlation

coefficients and their hierarchy based on hierarchical clustering with a cor-

relation distance metric (top).
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r2-value, and the self-similarity (scal) over Strouhal number

and Helmholtz number. The other branch contains all features

that describe the frequency content of the spectrum [StLmax,

mean, and standard deviation (std) of occurring Strouhal

numbers] and its strongly correlated tonality features.

Figure 11 shows a Uniform Manifold Approximation

and Projection for Dimension Reduction (McInnes et al.,
2018) (UMAP) of the Do728 sources. The colors and sym-

bols both represent the manual labels. UMAP estimates a

manifold that locally (and to some extend globally) pre-

serves the data structure in a low dimensional space, based

on which the data can be displayed in low-dimensional

space. UMAP requires a distance metric, such as a spatial

metric (e.g., Mahalanobis, Minkowski), or a similarity met-

ric (e.g., cosine, correlation). All mentioned metrics yield

similar results for the presented feature space. Figure 11

shows a 2D space in which we can observe how similar

source types are in the introduced feature space and how

well the introduced feature space separates the proposed

source types. The slat track and slat edge sources are simi-

lar, and gradually transition to slat/track sources, and then to

slat sources. These groups are not well separated which cor-

responds to our own assessment since the spectra often

smoothly transition from one shape to another and show

great variance. The slat tone sources are not captured well in

the feature space since they are manually identified with

very high confidence, but do not form a well separated

group. Other source types such as the wing tip and the trail-

ing flap side edge are well captured in the feature space and

show little variance. Overall, the figure shows that sources

of the same manually introduced source type are close to

each other in the introduced feature space. The ability of

UMAP to form separable source type groups highlights two

results. First, the introduced feature space captures sufficient

aeroacoustic information for the presented sources, under

the condition that the labeling is correct. Thus, groups of

multiple sources are formed in the UMAP based on the fea-

ture space. Second, the labeling is sufficiently good under

the condition that the feature space correctly captures the

sources’ aeroacoustic behavior. Thus, the groups mainly

contain unique source types. Since the source types were

identified manually based on the source spectra and not on

the introduced feature values, see Sec. IV, this indicates that

the label choices are reasonable.

B. Clustering results

The results presented are based on the Do728 and A320

datasets, obtained from sparse beamforming maps with

SIND and CRAFT. For the Do720, a minimum sample size

of seven was used for HDBSCAN. CRAFT determined fif-

teen source clusters. Figure 12 shows a confusion matrix of

the manually determined labels, see Sec. IV, and the cluster-

ing results. The matrix shows how often a source from a

manually determined category was clustered into the

FIG. 11. (Color online) Do728. UMAP (McInnes et al., 2018) components

for ncomponents ¼ 2; nneighbors ¼ 90 (�10% of the dataset), and a correlation

distance metric for the presented feature space.

FIG. 12. (Color online) Do728, confusion matrix of the occurrences of our

manually identified source types in CRAFT’s determined clusters. The

color intensity displays the mean clustering confidence. Cluster choices we

consider correct are marked with a green box. The tree above the clusters

displays their hierarchy.
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corresponding clusters. Given the manual source type identi-

fication is correct, a perfect clustering would result in a clus-

ter group for every manual label and all corresponding

sources would be clustered within their corresponding

group. Thus, a perfect clustering would achieve a square

confusion matrix with all results on the diagonal. The under-

lying color in the confusion matrix depicts the mean cluster-

ing confidence. Since most clusters correlate to the manual

labels (they are mostly located on the diagonal axis), our

definition of correct clustering results (which are marked

with a green box in the confusion matrix) will be based on

its comparison to the manual labels.

To identify the clusters which correspond to the manual

labels we will take the occurrences of source types per clus-

ter, their estimated confidence, their similarity to other

source types, and the cluster hierarchy into account. Thus,

cluster number one is assigned to the slat sources. We con-

sider slat sources that are assigned to cluster one as correct

clustering results, slat sources assigned to other clusters are

considered as wrong clustering results. A slat resonance

which was categorized as cluster number nine or ten (which

consists mainly of slat tracks) instead of cluster number six

(which consists solely of slat resonances) is considered cor-

rect since it is a sub-type of a slat track source. All sub-

categories that are clustered with their super-categories are

considered correct, but not vice versa. Thus, slat tracks that

are clustered in group six (slat resonances, a sub-category of

slat tracks) are considered wrong. Slats and slat tracks that

fall in cluster four (slat/slat track) and vice versa are consid-

ered correct, which is a super-category of these ambiguous

sources. Cluster numbers 3, 4, 14, and 15 comprise multiple

source types. As long as the corresponding source types

were assigned to the cluster that contained most of the sour-

ces, they are considered correct. The slat tracks occupy the

two clusters number nine and ten with high clustering confi-

dence, which we consider as equally correct, as the clusters

are both branches of a super-cluster. The leading flap side

edge occupies both cluster numbers three and seven with

high confidence, thus we consider both clusters as correct.

All other clustering results are considered as wrong.

Note that the following clustering assessment is based on

both our manual source labeling and our manual definition of

correct confusion matrix entries. In total, 213 out of 928

Do728 source predictions (22.95%) are considered wrong

and 715 (77.04%) are considered correct. Figure 13(a) shows

the number of clustering choices at the given clustering confi-

dence. Both the correct and wrong clustering choices

decrease with increasing confidence. Figure 13(b) shows the

relative number of wrong and correct clustering choices that

lie above the confidence threshold tC. We observe that the

wrong clustering results decrease much more rapidly than the

correct clustering results. As an example, if the clustering

results with confidence below tC ¼ 0:1 are discarded, only a

prediction for 59.26% of the sources is retained, but the clus-

tering accuracy increases to 91.45%.

Figure 14 shows the confusion matrix of our manually

identified source types and the clustering results for the

FIG. 13. (Color online) Do728, (a)

shows a histogram of the total wrong

and correct cluster choices over their

clustering confidence. (b) shows the

relative number of cluster choices

above the confidence threshold tC on

the x axis.

FIG. 14. (Color online) A320, confusion matrix of the occurrences of our

manually identified source types in CRAFT’s determined clusters. The

color intensity displays the mean clustering confidence. Cluster choices we

consider correct are marked with a green box. The tree above the clusters

displays their hierarchy.
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A320. The correct clusters are determined as stated above

for the Do728. In particular, the super-cluster 14, 15, and 16

represent Strouhal number scaling tones. Thus, we consider

the clustering results for the nacelle track, flap gap, and

wing tip as wrong. The super-clusters 7, 8, and 9 represent

slat/tracks, with sub-cluster 7 including the slats, and sub-

clusters 8 and 9 including the slat tracks and the slat edge.

In total, 154 out of 408 source predictions (37.75%) are

wrong and 254 (62.25%) are correct. As shown for the

Do728 results, if the clustering choices with confidence

below tC ¼ 0:1 are discarded, only a prediction for 51.47%

of the sources is retained, but the clustering accuracy

increases to 74.29%.

VI. DISCUSSION

CRAFT is built on the assumption that an aeroacoustic

source is driven by a mechanism that reveals its nature over

the variation of the Mach number. The limitation of this

general assumption is that we neglect any changes of the

source mechanism over the Mach number. We showed in

Fig. 3(b) at high Helmholtz numbers that sources can exhibit

a substantial Mach dependency, which is not captured by

the proposed method.

Based on this assumption, we proposed a variety of fea-

tures in Sec. III C that are supposed to formalize aeroacous-

tic properties and that are robust towards degraded spectra.

This is necessary to automatically extract the source spectra,

their positions, and their spatial distribution. The resulting

source spectra are often not very reliable at low frequencies

or contain missing values. This is especially problematic

since their dominant SPL, which is preferred in many fea-

tures, occurs at these low frequencies. We neither claim that

the list of the properties is complete and covers all acoustic

phenomena nor do we claim that the feature calculation is

robust in all data scenarios. We hope to spark a discussion

in the acoustic community on which properties are impor-

tant for which source types, how these can be broken down

to numeric feature values, and how they can be calculated

robustly and efficiently.

In Sec. III C 1, we presented a calculation method to

determine how self-similar the source spectra are over a

given frequency type, i.e., the Helmholtz and Strouhal num-

ber. For several source types, the feature does not achieve

satisfying results. The reason for this is the strong decay in

SPL over frequency, which dominates the correlation stron-

ger than the local spectral features such as tonal peaks or

humps. We encourage the community to propose a mathe-

matical definition that fixes these issues.

In Sec. III C 2, we showed that the normal Strouhal

number definition is not sufficient when working with

source spectra at different Reynolds numbers. Thus, we

defined a normalized frequency that is a generalization of

the Strouhal and Helmholtz number. that some source

mechanisms increase their frequency dependency on the

Mach number, while others decrease their Mach depen-

dency. At these conditions, the increase in Reynolds

number with increasing Mach number is much stronger

than at ambient conditions, which should result in a stron-

ger drift of the frequency and thus, a correlation. To our

knowledge, this is the first time this phenomenon is

described, but it is too complex to be fully covered within

the scope of this paper. More research is necessary to

understand the underlying acoustic mechanisms and the

implications on wind tunnel measurements.

In Sec. III C 3, we introduced a method to determine

the power exponent for a separate scaling over the Strouhal

and Helmholtz number using a weighted standard deviation

between the spectra, see Eq. (15). However, since we

assumed only small changes in the Mach number, and

based on the small amount of observed Mach numbers, the

correct determination of the power exponent is difficult

which causes large variances within source types, which

are larger than the variances between different source

types.

In Sec. III C 4, we introduced a variety of features to

describe the tonality of the spectra. Figure 10 shows that the

tonality features are highly correlated and belong to the

same branch of the feature hierarchy. At this point, it is not

clear if the tonal behavior can be captured by fewer features

with less correlation.

In Sec. III C 5, we introduced a method to detect if sour-

ces move with increasing Mach number, and in Sec. III C 6,

a method to detect if the source is point-like or line-like.

These features can only be used in combination with beam-

forming or other acoustic imaging methods. The results sug-

gest that the source movement feature currently estimates

the position uncertainty instead of the true movement of

sources (e.g., downstream moving vortex detachments).

Figure 10 showed that the source movement, the source

shape, and the source compactness are mostly correlated

and that they belong to the same branch in the feature hierar-

chy. This suggests that they are subjected to an underlying,

yet unknown, phenomenon.

In Sec. III C 7, we introduced features to determine the

general shape of the spectra and their frequency content.

Figure 10 showed that the r2-value is closely related to the

self-similarity and scaling behavior, the slope is rather con-

nected to the spatial source shape, and the frequency content

(mean and std Strouhal number) is connected to the tonality.

This suggests that the current definition of the spectrum

shape does contain source type-dependent variance, but

does not capture a basic aeroacoustic property.

To evaluate the quality of the features and CRAFT, we

labeled the presented datasets manually. We showed in

Fig. 11 that sources can gradually shift their spectrum shape

with increasing Reynolds number and that they can feature

multiple frequency regions with different mechanisms (see

Fig. 8). Thus, we heavily relied on meta-information for the

manual source type identification such as the source posi-

tion. Since the proposed method was designed to overcome

exactly this problem, the resulting metrics should be evalu-

ated with caution. Also, the labeling was not performed by

independent researchers.
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To assess the combined quality of the feature space and

of the manual labels we performed the dimensionality

reduction and manifold estimation (UMAP) in Fig. 11 to

visualize the data in two dimensions. The distance between

the source groups, their distribution density, and their con-

nections relate well to our observations in Sec. IV. Also, the

source type distribution emphasizes the problem of manu-

ally labeling the sources based on their spectra, because

source types gradually transition from one to another cate-

gory, e.g.,the slats that gradually transition to slat track

noise. Figure 8 also showed that a single source location can

gradually or abruptly change its mechanism with increasing

Reynolds number. However, Fig. 11 showed that the source

groups are reasonable with respect to their members distri-

bution in the introduced feature space.

We used HDBSCAN (Campello et al., 2013; McInnes

et al., 2017) to cluster the sources without any prior assump-

tion of the expected number of source types or source distri-

butions in the feature space. For the Do728, the resulting

clusters related well to our manual evaluation (see Fig. 12).

This is a promising result since the feature space not only

captures enough information to separate most of the source

types, but the variance between the different source types is

also greater than the variance of an unwanted phenomenon.

Since our source identification was often ambiguous and

since not all clusters related to our labels the exact accuracy

of CRAFT and the reason for the wrong cluster choices is

up for debate. Our evaluation of the Do728 clustering was

based on the confusion matrix in Fig. 12 and resulted in an

accuracy of 77.04%.

The usefulness of the chosen clusters can only be evalu-

ated qualitatively based on their consistency, their ability to

separate source mechanisms from each other, and detecting

sources for which the spatial location is misleading. For air-

frame noise, typical analyzed source regions are the whole

slat, flap, flap side edge, and nacelle region, including the

strakes (Ahlefeldt, 2013, 2017). Regarding the Do728 slat

region, CRAFT showed that typical slat sources are dis-

tinctly different from slat track sources based on the cluster

hierarchy. Occasionally, slat tones appeared with decreasing

probability towards high Reynolds numbers. Often, they

occurred at the slat positions but at different angles of attack

(slat noise appeared mainly at low angles of attack). CRAFT

was able to separate these phenomena very well. However,

multiple source types were clustered into the single cluster

14. Decreasing the sample size for HDBSCAN eventually

results in a separation of these sources but also numerous

sub-clusters for the other source types.

For the A320, CRAFT’s clusters did loosely correlate

to our manually identified source types and thus, the accu-

racy of the result was much more difficult to evaluate. We

encourage the readers to interpret the confusion matrix

results based on their own experience. The evaluation based

on our confusion matrix assessment in Fig. 14 resulted in an

accuracy of 61.52%. The lower clustering accuracy can be

accounted to the larger feature variance compared to the

Do728 sources, as depicted in Fig. 9. This is mainly caused

by the worse quality of the spectra, due to the smaller micro-

phone array employed for the measurements.

VII. CONCLUSION

The goal of this paper was to use clustering to group

multiple sources based on their aeroacoustic properties to

reveal underlying physical mechanisms and guide the acous-

tic expert in identifying and analyzing the sources correctly.

The general assumption of this EDSS “CRAFT” was that

the physical mechanism of a source can be determined by

the change of its properties over the Mach number. Thus,

source measurements at multiple flow speeds are required.

Example data of Dornier 728 and Airbus A320 CLEAN-SC

beamforming maps were used at different flow speeds,

angles of attack, and Reynolds numbers to derive the aeroa-

coustic properties and employ the presented method.

To reduce the complex acoustic properties to a data

space that can also be understood by the machine, we intro-

duced a feature-set that expresses these properties as a com-

bination of single, numerical values. These features are

independent or averaged over the spectra at different Mach

numbers, which enables CRAFT to compare and cluster

sources from different experiments. To further evaluate the

data, we presented exemplary source spectra and corre-

sponding manual labeling of the sources. We showed that

the manual labeling of the sources is often ambiguous due to

degenerated spectra, multiple source mechanisms, or

Reynolds number dependent trends, which resulted in addi-

tional uncertainty. Despite the ambiguous manual source

type identification, many source types formed distinguish-

able distributions in the introduced feature space, which was

visualized with a Uniform Manifold Approximation and

Projection for Dimension Reduction.

We used Hierarchical Density Based Clustering for

Applications with Noise to group the sources in the intro-

duced feature space, which did not include meta-information

such as the source position, the angle of attack, or the

Reynolds number. The clusters corresponding mostly to the

manually identified source types were consistent between the

datasets and provided the necessary information to identify

sources that behaved atypically for their spatial locations. For

example, it allowed the correct identification of multiple

source types that were all located on a single slat position.

The result also provided a confidence estimation for the clus-

tering results. We showed that sources are mostly clustered

wrongly by CRAFT at low confidence, while the clustering

with high confidence is mostly correct. Experts can discard

predictions below a confidence threshold, which further

increases the prediction accuracy.

For future work, we plan to analyze more data with the

introduced method to further evaluate the quality and reli-

ability of the proposed features. We also hope to start a dis-

cussion in the aeroacoustic community on the selected

properties and their corresponding features, possible short-

comings, alternative definitions or calculation methods, and

the manual identification of aeroacoustic source phenomena.
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