elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Hypergravity Reduces Astrocyte Migration by Altering Cytoskeletal Dynamics

Liemersdorf, Christian und Lichterfeld, Yannick und Kalinski, Laura und Frett, Timo und Jordan, Jens und Hemmersbach, Ruth (2020) Hypergravity Reduces Astrocyte Migration by Altering Cytoskeletal Dynamics. FASEB JOURNAL, 34 (S1). Federation of American Societies for Experimental Biology. doi: 10.1096/fasebj.2020.34.s1.02872. ISSN 0892-6638.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Glial scar formation through astrocytes impairs neural regeneration following spinal cord injury, head trauma, or stroke. Astrocyte migration towards the lesion and induction of a reactive astroglial phenotype require dynamic cytoskeletal protein rearrangements. In this glial cell model, hypergravity was used to alter cytoskeletal dynamics, i.e. stabilizing microtubules while destabilizing actin filaments. We hypothesize that increased gravitational (mechanical) loading by means of centrifugation (hypergravity) modulates in vitro astrocyte function in a way that could reduce their potential for scar formation. We exposed primary murine cortical astrocytes to 2g using two types of custom-designed hypergravity platforms at DLR (Cologne, Germany) and assessed a variety of parameters important for glial scarring in vitro. The platforms unlike commercial laboratory centrifuges model physiological hypergravity and allow for cell cultivation and live-cell imaging. Primary astrocytes were isolated from wildtype (C57BL/6J) as well as transgenic LifeAct-GFP mice and subjected to increased gravitational load. We measured cell proliferation and survival, after 7 days of exposure to 2g, as well as spreading and migration rate online for 24h. We visualized morphological features, cytoskeletal actin filament dynamics, reactivity markers and investigated expression levels of focal adhesion-related proteins. The exposure to 2g hypergravity induced a decrease in cell spreading (20%) coincidental with an inhibited migratory behavior (40%) and altered cytoskeletal dynamics. Astrocytic proliferation and survival were not affected. The expression of the focal adhesion marker vinculin was increased by 70–80%. We conclude that hypergravity attenuates astrocyte spreading and migration. These parameters are crucial for glial scar formation, while basic cellular processes, such as proliferation and apoptosis were unchanged. The response appears to be mediated through altered cytoskeletal dynamics and may provide targets for therapies promoting neuronal regeneration.

elib-URL des Eintrags:https://elib.dlr.de/185770/
Dokumentart:Zeitschriftenbeitrag
Titel:Hypergravity Reduces Astrocyte Migration by Altering Cytoskeletal Dynamics
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Liemersdorf, ChristianChristian.Liemersdorf (at) dlr.dehttps://orcid.org/0000-0001-8407-5226NICHT SPEZIFIZIERT
Lichterfeld, YannickYannick.Lichterfeld (at) dlr.dehttps://orcid.org/0000-0001-8755-9920NICHT SPEZIFIZIERT
Kalinski, LauraLaura.Kalinski (at) dlr.dehttps://orcid.org/0009-0009-4447-3460NICHT SPEZIFIZIERT
Frett, TimoTimo.Frett (at) dlr.dehttps://orcid.org/0000-0002-5572-1177NICHT SPEZIFIZIERT
Jordan, JensInstitute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany and Lehrstuhl für Luft- und Raumfahrtmedizin, Universität zu Köln; Jens.Jordan (at) dlr.dehttps://orcid.org/0000-0003-4518-0706NICHT SPEZIFIZIERT
Hemmersbach, RuthRuth.Hemmersbach (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:17 April 2020
Erschienen in:FASEB JOURNAL
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:34
DOI:10.1096/fasebj.2020.34.s1.02872
Verlag:Federation of American Societies for Experimental Biology
ISSN:0892-6638
Status:veröffentlicht
Stichwörter:Hypergravity; Astrocyte; Cytoskeletal Dynamic
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Forschung unter Weltraumbedingungen
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R FR - Forschung unter Weltraumbedingungen
DLR - Teilgebiet (Projekt, Vorhaben):R - Menschliche Leistungsfähigkeit unter veränderten Schwerkraftbedingungen
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Luft- und Raumfahrtmedizin > Gravitationsbiologie
Hinterlegt von: Becker, Christine
Hinterlegt am:11 Apr 2022 10:20
Letzte Änderung:20 Okt 2023 09:03

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.