elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

TINA: The Modular Torque Controlled Robotic Arm - a Study for Mars Sample Return

Maier, Maximilian und Pfanne, Martin und Sedlmayr, Hans-Jürgen und Kolb, Alexander und Chalon, Maxime und Bayer, Ralph und Friedl, Werner und Wüsthoff, Tilo und Meenakshi Sundaram, Ashok und Bihler, Markus (2021) TINA: The Modular Torque Controlled Robotic Arm - a Study for Mars Sample Return. In: 2021 IEEE Aerospace Conference, AERO 2021 (208014). IEEE. 2021 IEEE Aerospace Conference, 2021-03-06 - 2021-03-13, USA. doi: 10.1109/AERO50100.2021.9438222. ISBN 978-172817436-5. ISSN 1095-323X.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://ieeexplore.ieee.org/document/9438222

Kurzfassung

Upcoming space missions, like the Mars Sample Return Mission, increasingly aim to include robots to enable highly skilled tasks and to increase safety. However, the requirements for such robots are high, due to the demanding environment and the high reliability of the system needed to operate independently in space. As part of the ESA project for a Sample Transfer Arm (STA) breadboard study, the German Aerospace Center (DLR) has developed a small modular torque controlled robotic manipulator that complies with the MSR mission requirements. It has 7 degrees of freedom (DOFs) and a total arm length of 2,30 m. The brakes hold the arm in position during no operation and serve as emergency stop. The reachability of the robot was investigated in a workspace study. Each robotic joint incorporates a brushless high torque DC motor combined with a harmonic drive gear stage and a planetary pre-gear stage. A Universal Motor Controller (UMC) is placed in each shoulder of the robotic arm, which consists of an FPGA, phase current measurement, the motor bridge driver and peripherals. To ensure safety and flexibility, a redundant matrix concept is integrated in the UMC, which allows control of more than one joint in case of a failure. The communication between the joints and the OBC (On-board-computer) is using SpaceWire with a 3 kHz cycle time, implemented in the joints FPGA. The motor control loop and the joint torque controller are implemented in the FPGA. The joint power is fed by two separate supplies, logic and motor, for a greater efficiency in power limited missions. The torque estimation analysis proved that the maximum required torques can be generated in each joint. To ensure the absolute high accuracy of the arm position sensing, the motors have a hall-sensor twelve step commutation and in addition a resolver on the link side resolver. An internal torque sensor in each joint is added to measure torques on the end-effector which allows collision avoidance during a task. To allow autonomous tasks, such as moving samples from a rover and inserting them into a sample container, various intelligence features have been included. For the arm control, a RCU (Robot Control Unit) is located in the base of the arm, implementing a Cartesian impedance and position controller. With all these features, the newly developed robotic manipulator meets all the needed requirements of the MSR mission. It is capable of interacting with sensitive spacecraft components, but can also be used as a payload manipulator for rovers.

elib-URL des Eintrags:https://elib.dlr.de/185433/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:TINA: The Modular Torque Controlled Robotic Arm - a Study for Mars Sample Return
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Maier, Maximilianmaximilian.maier (at) dlr.dehttps://orcid.org/0000-0003-1502-696XNICHT SPEZIFIZIERT
Pfanne, Martinmartin.pfanne (at) dlr.dehttps://orcid.org/0000-0003-2076-4772NICHT SPEZIFIZIERT
Sedlmayr, Hans-Jürgenhans-juergen.sedlmayr (at) dlr.dehttps://orcid.org/0000-0003-1180-3960NICHT SPEZIFIZIERT
Kolb, AlexanderAlexander.Kolb (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Chalon, MaximeMaxime.Chalon (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Bayer, Ralphralph.bayer (at) dlr.dehttps://orcid.org/0000-0003-2561-7974NICHT SPEZIFIZIERT
Friedl, WernerWerner.Friedl (at) dlr.dehttps://orcid.org/0000-0003-3002-7274NICHT SPEZIFIZIERT
Wüsthoff, TiloTilo.Wuesthoff (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Meenakshi Sundaram, AshokAshok.MeenakshiSundaram (at) dlr.dehttps://orcid.org/0000-0001-9201-6947NICHT SPEZIFIZIERT
Bihler, MarkusMarkus.Bihler (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:März 2021
Erschienen in:2021 IEEE Aerospace Conference, AERO 2021
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1109/AERO50100.2021.9438222
Verlag:IEEE
ISSN:1095-323X
ISBN:978-172817436-5
Status:veröffentlicht
Stichwörter:Exploration; Mars Sample Return; Robotic; Robot Arm
Veranstaltungstitel:2021 IEEE Aerospace Conference
Veranstaltungsort:USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:6 März 2021
Veranstaltungsende:13 März 2021
Veranstalter :IEEE Aerospace Conference
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - Planetare Exploration
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013) > Mechatronische Systeme
Hinterlegt von: Maier, Maximilian
Hinterlegt am:28 Feb 2022 09:20
Letzte Änderung:24 Apr 2024 20:46

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.