Laux, Lea und Schirmer, Sebastian und Schopferer, Simon und Dauer, Johann C. (2022) Build Your Own Training Data -- Synthetic Data for Object Detection in Aerial Images. 4th Workshop on Avionics Systems and Software Engineering, 2022-02-22, Virtuell.
PDF
17MB |
Kurzfassung
Machine learning has become one of the most widely used techniques in artificial intelligence, especially for image processing. One of the biggest challenges in developing an accurate image processing model is to collect large amounts of data that are sufficiently close to the real-world scenario. Ideally, real-world data is therefore used for model training. Unfortunately, real-world data is often insufficiently available and expensive to generate. Therefore, models are trained using synthetic data. However, there is no standardized method of how training data is generated and which properties determine the data quality. In this paper, we present first steps towards the generation of large amounts of data for human detection based on aerial images. To create labeled aerial images, we are using Unreal Engine and AirSim. We report on first impressions of the generated labeled aerial images and identify future challenges-current simulation tools can be used to create realistic and diverse images including labeling, but native support would be beneficial to ease their usage.
elib-URL des Eintrags: | https://elib.dlr.de/185409/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Build Your Own Training Data -- Synthetic Data for Object Detection in Aerial Images | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 22 Februar 2022 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Machine Learning, Synthetic Data, Simulation Environment, Unmanned Aircraft, Human Detection | ||||||||||||||||||||
Veranstaltungstitel: | 4th Workshop on Avionics Systems and Software Engineering | ||||||||||||||||||||
Veranstaltungsort: | Virtuell | ||||||||||||||||||||
Veranstaltungsart: | Workshop | ||||||||||||||||||||
Veranstaltungsdatum: | 22 Februar 2022 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||
HGF - Programmthema: | Komponenten und Systeme | ||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | L CS - Komponenten und Systeme | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Unbemannte Flugsysteme | ||||||||||||||||||||
Standort: | Braunschweig | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Flugsystemtechnik > Unbemannte Luftfahrzeuge | ||||||||||||||||||||
Hinterlegt von: | Schirmer, Sebastian | ||||||||||||||||||||
Hinterlegt am: | 24 Feb 2022 14:46 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:46 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags