elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Sparsity-Enhanced Convolutional Decomposition: A Novel Tensor-Based Paradigm for Blind Hyperspectral Unmixing

Yao, Jing und Hong, Danfeng und Xu, Lin und Meng, Deyu und Chanussot, Jocelyn und Xu, Zongben (2022) Sparsity-Enhanced Convolutional Decomposition: A Novel Tensor-Based Paradigm for Blind Hyperspectral Unmixing. IEEE Transactions on Geoscience and Remote Sensing, 60, Seiten 1-14. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2021.3069845. ISSN 0196-2892.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
4MB

Offizielle URL: https://ieeexplore.ieee.org/document/9399660

Kurzfassung

Blind hyperspectral unmixing (HU) has long been recognized as a crucial component in analyzing the hyperspectral imagery (HSI) collected by airborne and spaceborne sensors. Due to the highly ill-posed problems of such a blind source separation scheme and the effects of spectral variability in hyperspectral imaging, the ability to accurately and effectively unmixing the complex HSI still remains limited. To this end, this article presents a novel blind HU model, called sparsity-enhanced convolutional decomposition (SeCoDe), by jointly capturing spatial–spectral information of HSI in a tensor-based fashion. SeCoDe benefits from two perspectives. On the one hand, the convolutional operation is employed in SeCoDe to locally model the spatial relation between the targeted pixel and its neighbors, which can be well explained by spectral bundles that are capable of addressing spectral variabilities effectively. It maintains, on the other hand, physically continuous spectral components by decomposing the HSI along with the spectral domain. With sparsity-enhanced regularization, an alternative optimization strategy with alternating direction method of multipliers (ADMM)-based optimization algorithm is devised for efficient model inference. Extensive experiments conducted on three different data sets demonstrate the superiority of the proposed SeCoDe compared to previous state-of-the-art methods. We will also release the code at https://github.com/danfenghong/IEEE_TGRS_SeCoDe to encourage the reproduction of the given results.

elib-URL des Eintrags:https://elib.dlr.de/185403/
Dokumentart:Zeitschriftenbeitrag
Titel:Sparsity-Enhanced Convolutional Decomposition: A Novel Tensor-Based Paradigm for Blind Hyperspectral Unmixing
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Yao, JingNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hong, DanfengDanfeng.Hong (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Xu, LinNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Meng, DeyuSchool of Mathematics and StatisticsXi’an Jiaotong UniversityXi’an ChinaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Chanussot, JocelynInstitute Nationale Polytechnique de GrenobleNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Xu, ZongbenSchool of Mathematics and StatisticsXi’an Jiaotong UniversityXi’an ChinaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2022
Erschienen in:IEEE Transactions on Geoscience and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:60
DOI:10.1109/TGRS.2021.3069845
Seitenbereich:Seiten 1-14
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0196-2892
Status:veröffentlicht
Stichwörter:Tensors, Hyperspectral imaging, Convolutional codes, Task analysis, Optimization, Encoding, Context modeling
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Rösel, Dr. Anja
Hinterlegt am:23 Feb 2022 12:54
Letzte Änderung:19 Okt 2023 13:55

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.